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1. ABSTRACT 

An impl i c i t  f in i te -d i f fe rence  scheme i o  used to   so lve   the   l aminar  

and turbulent  boundary-layer  equations  for  perfect  gases  and  reacting 

gas  mixtures  in  chemical  squilibrium. The formulation  of  the  boundary- 

layer  equations  neglects  transverse  curvature  effects,   and  the  equili-  

brium  chemistry model  assumes that  the  element  composition  across  the 

boundary-layer is constant.  Thus, inject ion  of  a foreign  gas  a t  the  

wall boundary  cannot  be  considered, 

The numerical  procedure is app l i ed   t o   bo th   i n t e rna l  and externa l  

flow  problems  and the  results are compared with  experimental   data and 

other  numsrical  solutions  where  these  data were avai lable .  The solu- 

t ions  for   laminar  and turbulent  f lows  of  perfect   gases and  laminar 

flow of an  equilibrium  gas  without mass t r ans fe r  are i n  good agreement 

with  experimental data and/or  other  numerical   solutions.   For the case 

of mass t r ans fe r  at the  wall, the  numerical   solut ion is i n  good agree- 

ment with  experimental   heat-transfer data, bu t   t he   ve loc i ty   p ro f i l e s  

and  akin-friction  predictions are not: i n  good agreement  with the  

available  data,   Additional  experimental  data are needed t o  aseess t h e  

accuracy  of  the  numerical  solutions with mass t r a n s f e r   e f f e c t s .  

The experimental data which were avai lable   for   turbulent   f lows  of  

an  equilibrium gas were in a range  of  pressure  and/or  temperature  where 

the  effects  of  equilibrium  chemistry are not large. With the  exception 

of  an  integral  method  of solut ion  for   turbulent   f low  of   an  equi l ibr ium 

gas i n   nozz le s  - which f a i l e d  t o  converge  for the problam  considered - 
other  numerical  methods were not: ava i l ab le   fo r  comparison. However, 

the  solut ions  obtained are i n  good agreement with the  l imited data 

avai lable .  
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V. INTRODUCTION 

The e x i s t i n g   l i t e r a t u r e  on t h e  numerical so lu t ion  of the  laminar 

boundary-layer  equations  for  two-dimensional and  axisymmetric  flows is  

extensive. A recent review of t h e  most commonly used  techniques  for 

solving  the  laminar  boundary-layer  equations for non-equilibrium, 

equilibrium,  and  non-reacting  chemistry is given by Blot tner   [ ref  . 11 . 
Kline et  al ,  [ re f .  21 present  a similar review  of  the  prediction 

methods  used for   the   so lu t ion   of   the   incompress ib le   tu rbulen t  boundary- 

layer  equations.  Examples of   the more recent   solut ions  of   the  tur-  

bulent  boundary-Iayar  equations ar0 t h e   r e p o r t s  by Harris [ r e f ,  31 and 

Ple tcher   [ re f ,  41, 

The impl ic i t   f in i te -d i f fe rence  scheme of t h e  Crank-Nicolson 

[ref, 51 type ha8 been  developed  extensively  by  Blottner  [refs. 1, 6 ,  

71 and by Davis [refs. 8 ,  9, LO] f o r  a wide  range  of  laminar boundary- 

l aye r  flows. This method of  solution  has  been  demonstrated t o  be 

accurate  and s t a b l e  and does  not   require   an excessive amount of com- 

puting time. This   type  of   f ini te-difference scheme has  been  used by 

Harris [ re f .  31 to  solve  the  turbulent  boundary-layer  equations  for 

non-reacting  gases, Harris considered mass transfe'r a t  the  wall and 

the  laminar-turbulent  transit ional  regime.  Cebeci et  al, [ r e f s ,  11, 

12, 131 used  an  implici t   f ini te-difference scheme to   ob ta in   t he   so lu -  

tion  of  the  turbulent  boundary-layer  equations, However, t he  numeri- 

cal procedure  used by  Cebeci differed  considerably from the  Crank- 

Nicblson  type scheme, The s o l u t i o n p f   P l e t c h e r  used  an  expl ic i t  

f ini te-difference  calculat ion  procedure  based on t h e  DuFort-Frankel 

[ r e f ,  141 scheme, The turbulent  solutions  of  Cebeci and P le t che r   a l so  
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considered  only  non-reacting  chemistry. 

In the  references  cited  above,  the  authors  have  considered  only 

external flows. E l l io t t ,   Ba r t z ,  and S i lve r  -[ref. 151 have  developed 

an   in tegra l  method  of so lu t ion   for   p red ic t ing   tu rbulen t  boundary- 

layer   f laws  in   rocket   nozzles .  Boldman et al. [ ref .  161 have  applied 

t h e  method to   p red ic t   tu rbulen t - f lowo  in   supersonic   nozz les .  Eden- 

field  [ref.   171  has  extended  the method t o  predict   turbulent   f lows  in  

hypervelocity  nozzles in which the  gas-was  considered  to  be in chemi- 

cal  equilibrium. 

For the  lower Mach number perfect   gas  cases considered by E l l i o t t ,  

Bartz, and Silver and  by Boldman, r e l a t i v e l y  good agreement  between  the 

predict ions and the  experimental   data   for   the  heat- t ransfer   dis t r ibu-  

t i o n  was obtained,  Edenfield  found  that  the method did  not   predict  

t he  boundary-layer  displacement  thickness  accurately downstream  of t he  

nozzle   throat  and f a i l e d  t o  converge f o r   l o c a l  Mach numbers of  about 

16. 'Thus, for  hypersonic  nozzle  f laws, a limit e x i s t s   f o r   t h e   u s e  of 

t h e   i n t e g r a l  method. Other  disadvantages  of  the  integral  method are 

the  amount of  empirical  data needed  and the  number of  adjustable  para- 

maters which s t rongly   in f luence   the   resu l t s   o f   the   p red ic t ions .  

As a r e s u l t  of t he   exce l l en t  agreement  between  experiment  and 

theorg which has  been  obtained by Blot tner  and Davis for   bo th   reac t ing  

and non-reacting  chemistry  for laminar boundary-layer f l w s  and  by 

Harris for  non-reacting  turbulent  f lows  using  the Crank-Nicolson type 

impl ic i t   f in i te -d i f fe rence  scheme, t h i s  method of so lu t ion  was se= 

lec t ed   fo r   t he   p re sen t   i nves t iga t ion .  Both laminar and turbulent  flows 

of perfect  gasee and mixtures of perfect   gases   in   chemical   equi l ibr ium 
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are  considered for f l a t  plates, wedges,  two-dimensional or axisym- 

metric  blunt  bodies and nozzles. Mass transfer is considered  for  the 

case where the  injected gas is the same as that  of  the  external  flow, 

The primary emphasis has  been to  obtain  solutions  for  high Mach  number 

flows having  strongly  favorable  pressure  gradients and highly cooled 

walls 

3 .  

. "" 
- 



V I .  ANALYSIS 

The equations  of  motion  for  laminar  or  turbulent  f law  of  perfect  

gases  and  equilibrium gas mixtures are developed i n  Levy-Lees vari- 

ables .  and expressed in   t he   gene ra l   pa rabo l i c  form necessary  for   the 

implici t   f ini te-dtfference  solut ion  procedure employed  by Blot tner  

[ ref .  6 )  and  by Davis [ re f .  81. 

. .  

Semi-empirical  expressions  for  the  turbulent eddy v i scos i ty  are 

presented   for   the  cases of a s o l i d  wall and a porous wall. The 

f in i te -d i f fe rence  scheme is developed  and the  procedures employed fo r  

determining  the i n i t i a l  p r o f i l e   d a t a ,  and the   spec i f i ca t ion  of edge 

conditions are discussed.  Definitions  of  the  boundary-layer  para- 

maters which  have  been employed are also  given. 

6.1  Governing  Equations 

The governing  equations  for  laminar or turbulent  boundary-layer 

flow of an a r b i t r a r y  gas i n  thermodynamic equilibrium o r  of a perfec t  

gas are presented i n  dimensional  variables and  trans€ormed t o  Levy- 

Lees variables. The rate of mass t r a n s f e r  a t  the  wall boundasy f o r  

porous-walls is assumed small I n  comparison t o   t h e  boundary-layer mass 

flow  and  normal  gradients are negl igible .  The boundary-layer thick- 

ness is assumed t o  be small i n  comparison t o  the  body radius  of curva- 

t u r e  and cent r i fuga l   forces  are neglected. The coordinate  system is 

shown i n   F i g u r e  1. 

6.1.1  Laminar  Boundary-Layer Conservation  Equations 

The conservation  equations  for  laminar  boundary-layer  flows of a 

pe r fec t   gas   o r  of a chemically  reacting gas mixture  in   equi l ibr ium are 
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developed  in  this  section. For a multicomponent  gas mixture, the lam- 

inar  boundary-layer  equations  are  expressed  in  dimensional  variables 

as; (see  Hirechfelder et  al. [ref. 38 J ) : 

Continuity 

where 

j = 0 for two dimensional  flow 

j - 1 for  axisymmetric  flow 
Momentum 

Energy 

where 

* * a ~  * ISS- * * 
q I - k  -+ 2 hi Ji f *  a y i=l 

and 
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Suecies 

Assuming the gas  mixture t o  be i n   l o c a l  chemical equilibrium,  the  spe- 

cies composition is a function  of  the  press'ure,  temperature, and con- 

cent ra t ions  of the  chemical  elements, The di f fus ion   equat ion   for  the 

is obtained  from  equation ( 6 )  af te r   mul t ip l ica-  

summing over a l l  species,  ISS, as 

where 

ISS j 

111 
c j  - c a j M c  i M i  i 

Assuming that  the  element  cornposition, cj ,  remains  constant  across  the 

boundary-layer, the  conservation  of  energy,  equation (3),  can  be ex- 

p re s sed   i n  t e r n  of t o t a l   en tha lpy  i n  the  same general  form as that 

f o r  a pe r fec t  gas. If c is cons. tant ,   the   heat   t ransfer   can  be ex- 

pressed as 

j 

* * a T* 
a Y* 

q - - K  

where 

* * ISS 
K * - k f - L  1 h i  

Prf i-I 'j a T*  T* 
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Using the   de f in i t i ons ,  
n 

* * u  
*' 

H - h  +- 2 

h* - h (P , T*) 
* *  

and the normal momentum equation 

the  heat   t ransfer ,equat ion (9). can be  expressed as 

where 
* *  

Pr  .I - cP ll 
K* 

Multiplying  equation (2) by  u  and  adding to   equa t ion  (3) with the use rk 

of  equation (14) gives - 1 

The conservation  of  energy a8 expressed  by  equation (16) has the  

same form as t h a t   f o r  a perfect gas ,   but   for   an  equi l ibr ium  gas  the 

thermodynamic  and t ranspor t   p roper t ies  are determined f o r  the spec i f ied  

gas mixture,  This  approach is limited s i n c e  the element  composition is 

n o t   s t r i c t l y   c o n s t a n t  across the boundary layer .  This  approach  cannot 

b e  used f o r   i n j e c t i o n  of a foreign gas, since  the  element  composition 
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is not a constant  across  the  boundary  layer.  Therefore,  the  case  of 

mass t r a n s f e r   i n t o   t h e  boundary  layer is r e s t r i c t e d   t o   i n j e c t i o n  of 

t he  same equilibrium gas mixture  or   perfect   gas  as t h a t  a t  the   ou ter  

edge  of  the  boundary  layer. 

For  high  Reynolds number flow,  the  conservation  equations are non- 

dimensionalized by var iables ,   g iven,by Van  Dyke [ref.  191,  which  are of 

order  one in  the  boundary  layer. The nondimensional  variables are de- 

f i n e d   i n   t h e  list of symbols. The conservation  equations i n  non-dimen- 

s ional   var iables   have  the same form as the  dimensional  equations and 

are! 

Continuity 

Enernv 

For a per fec t  gas, 

P r  = constant 

cp = constant 
* 

h = T  

and the   v i scos i ty  may be expressed by Sutherland's law 
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T+C 

where 

* 
c = 198,6'R f o r  air  

o r  by a simple  parer law 

= Tu 

The equations  of state are: 

P - p~ f o r  a per fec t  gas 

and 

P = p x T for   an   equi l ibr ium gas RO 

Mc 
P 

The thermodynamic  and t ransport   propert ies   of   an  equi l ibr ium gas 

are funct ions of the  chemical  composition and in te rna l   energ ies  of the  

species  in  the  gas  mixture,  and  have  been  determined  using a modifica- . -  
t i o n  of the computer  program  developed  by  Lordi, Mates, and  Moselle 

[ r e f e  201, A descr ipt ion  of  the modified  program is g iven   i n  Appendix 

A. 

6*1,2 Laminar  Boundary-Layer 

Equations  Exoressed in Levy-Lees Variables 

A more convenient fora of the  conservation  equations  for  numerical  

9 



so lu t ion  is obtained by the  introduct ion of a stream funct ion defined 

as 

where 6 and rl are the  Levy-Lees transformed  coordinates: 

X 

0 

At the   s tagnat ion  point  of a blunt  body the boundary-layer  equations 

have a removable s ingular i ty .  As 5 + 0, the   l imi t ing   process   g ives  

o r  

The d i f f e ren t i a l   ope ra to r s   exp res sed   i n  the Eon coordinate  system 

10 



are: 

and 

Using  equations (25) , (311, and (32) gives 

or 

2 E f 5 + V + f = 0  

where 

A t  the  stagnation point, 

(33) 

Differentiation of equation (25) with respect to  y using equation (32) 

f '  = u/ue 
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Evaluation of equation (18) at the  outer   edge of t h e  boundary- 

layer   gives   the  pressure  gradient  as: 

" 0  dPe due 
dx Pe 'e dx (37) 

With t h e  use of equations (31) - (37). the  conservation  equations 

for  laminar  boundary  layers are; (Blot tner   [ ref .  71): 

Cont inui t1  

2 E F E + V ' + F - 0  

Momentum 

2FF PC + VF' = f3[$ - F2] + (CF') ' (39) 

E n e r a  

2SF g $. V g' - g" '+ - C 
E Pr  P r  8' + 

where 

and 
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o r  a t  the  s tagnat ion  point  

6.1.3 Turbulent Boundary-Laver Conservation  Eauations 

In   th i s   sec t ion ,   the   conserva t ion   equat ions   for   tu rbulen t   f low 

and the  semi-empirical  formulations  of  the eddy v i scos i ty  model  and 

the  eddy thermal  conductivity are presented..  Following the usual  

p rac t i ce ,   t he  symbol8 H, P, p ,  u,  and v are to   be   i n t e rp re t ed  as time 

averaged  properties, The nondimensionalized form of the conservation 

equations are: 

Continui ty  

Energy 

The solution  of  equations (42)-(44) requi res   express ions   re la t ing  

the  Reynolds shear  stress term and  v H t o   t h e  mean va r i ab le s  -(7 

u, v  and H, These expressions are obtained  by  introducing  an eddy * 
viscos i ty ,  c+ , and an eddy thermal  conductivity, E ~ ,  where i t  is 

* 

assumed t h a t  
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and 

o r  

- * *  
"u'*v'* I E+ au 

aY* 

where 
. .. . -. 

c* E+* 

Prt 
P 

I- * 
'k 

(49) 

The value of the   tu rbulen t   Prandt l  number is t aken   to  be 0.9 for   bo th  

perfect   gases  and equflibrium gas mixtures. * 
The eddy visco'elty, E+ , is evaluated  using  the  concept of a two- 

l aye r  eddy v i scos i ty  model cons is t ing  of an  inner  law, E~ + , valid near 

t h e  wall and an outer  law, eo , f o r   t h e  remainder  of the  boundary layer ,  

This procedure has been employed successfully  by a number of authors: 

* 

+* 

for example, Cebeci, Smith, and  Mosinskis  [ref.  121,  and Harris [ r e f ,  

31. These authors  used  expressions  for  the  inner eddy v i scos i ty  law 

which were based on Erandtl's  mixing-length  concept stated as 

* 
where 11 is the mixing-length, In the present   solut ion  of  the turbu- 

l e n t  boundary-layer  equations, a number of  expressions based on equation 
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(50) have  been  used,  and i n   a d d i t i o n   t o   t h e s e  models, an eddy viscos- 

i t y  based on t h e  Boussinesq [ r e f ,  211 r e l a t i o n  

has  been  used f o r   t h e  non-porous wall cases.  For  the  porous wall case 

the eddy viscosity  expression  considered was based  on  equation  (50). 

These  expressions are given  below, 

A. Expressions  for  the  Inner Eddy Viscosity Law 

fo r  no Mass Transter  a t  the  Wall 

The eddy v i scos i ty  laws based on equation (50) have  been  derived 

by analogy  with Van Driest ' 8  proposal  for  the  mixing-length. Van 

Driest [ re f .  221 considered  Stokes'  flow for an I n f i n i t e  f lat  p l a t e  

with per iod ic   o sc i l l a t ions  i n  the  plane p a r a l l e l  t o  t h e   p l a t e  t o  ar- 

rive a t  an  expression  for 

Van Driest is 

1 1 =  
* 

t h e  mixing  Sength. The expression  given by 

or   using law of  the wall coordinates 

11 = kl Y 11 - exp(-y /A 11 
* * + +  

where 
* *  

y+ 111 - y *f * 
V 

(53) 
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By correlation of experimentally  determined  velocity  profiles  for 

incompressible  turbulent  flows in tubes  the  constants  were  found  to  be 
~. 

kl = 0.4 

and 

Ai = 26 

or 

Patankar an4 Spalding  [ref, 231 proposed  the  shear  stress at the 
* 

wall, T ~ ,  in equation (54) be replaced by the  local  value T . The 

expression  for A using th i s  proposal is 

* 
* 

A* = 26v (T /p ) * * * -1/2 

The conservation of momentum, equation (44), for  an  incompressible 

two-dtmensional  flow  can be expressed  as 

(55) 

for the  region  near  the  wall,  Integration of equation (56) and  sub- 

stituting  into  equation (55) gives A as 
* 
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4 2  

A* = 26u* [$ + $ -1 
o r  

A + =  26[1 = P y ] 
+ + 4 2  

(57) 

where 
* 

dPe * * * 3  . 
P+ = - - * u /p (u,) (59)  

dx 

Cebeci and Smith [ re f .  111 no te   t ha t   t he  term in   b racke t s  of equa- 

t i ons  (57) and (58 )  may become negat ive €or accelerat ing  f lows  leading 

to   the   square  root of a negat ive number. To avoid the   numerical   d i f -  

f icul ty   Cebeci  and Smith  replaced  equations (57) and (58) by 

* -1/ 2 
A* - 26u*[ 3 + *ij * dP* 

P dx 

and 

A+ - 26111 = P y 11 + + -1/2 

As a r e s u l t  of the   d i f f icu l t ies   encountered   us ing   equat ions  (571, 

(60)  and (61),  equation (57) was a r b i t r a r i l y  modified  by  replacing  the 

pressure  gradient   with  the  absolute   value  giving 
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. .  

dx 
* 

In a more recent  publication, Cebeci [ref. 131 suggested  that   the 

value of y in equation ( 5 8 )  be replaced  by a constant   value of 11.8. + 
This is an  experimentally  determined value for the  laminar  sublayer 

thickness and gives 

A+ = 26[1 - 11,8P ] + -112 

Cebeci [ref, 133 does  not  indicate D procedure  for   the case of a nega- 

tive square root  which occurs for P.' > U U . 8 .  

Beichardt [ref .24] considered  the  incompressible  continuity equa- 
+* t i on   fo r   t he   f l uc tua t ing   ve loc i ty  components to   demonstrate   that  E 

varies with y and preeented an expression which vas obtained by curve 
i 

*3 

f i t t i n g  experimental   data of flaw in  pipes .   Relchardt ' s   expression  for  

the   inner  eddy v i scos i ty  is 

B. Eddy Viscosity Expression for  t h e  Case of a Porous Wall 

Fur a porous wall with pressure  gradient,   the  conservation  of 

momentum, equation (44), is approximated for   the   reg ion   near   the  wall 

a s ,  (Cebeci [ r e f ,  131): 
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Solving  equation (65 )  f o r  the shear  stress gives 

The damping constant,  A+, for the  porous wall is expressed as 

Assuming t h a t  y a t  the.edge of t he  laminar sublayer   for   the  case of a 

porous  wall is approximately  the same a8 t h a t   f o r  a f l a t   p l a t e   w i t h o u t  

mass transfer,   Cebeci [ref, 131 used a value  of 11.8 f o r  y and ex- 

pressed A as 

. +  

+ 
+ 

For the  case of no  mass t ransfer ,   equa t ion  (68) reduce@  to  equation 

(63),  and f o r  a porous f l a t   p l a t e  becomes 

The nondimensional  form  of  the  inner eddy v i scos i ty  laws for no 

mass t r ans fe r  a t  the  wall are: 
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. .  . 

Van Driest  [ref. 22 

Zi - x1 1 - + I x2 

Patankar and Spaldinn [ref. 231 

IF' I 

Cebeci  and  Smith  [ref. 121 

- g ,  u - due 
p e e d x  

Absolute Value of the Pressure  Gradient 

Ei - XI 1 - exp + I .  
I 

- x2 
c. 

' f, 
- + = p  u 2 p e e  

20 

1 

' IF'I 

I 

(73) 



Cebeci [ref. 131 

where A is given by equation (63). In equations  (70)-(74)., X1 and X2 

are  defined as: 

+ 

and 

Reichardt [ref. 241 

[$I 
"pp 

x2 26~1 J'VD 

1/2 

- 4.4 tan h fi I (77) 

The inner eddy viscosity law for the  case  of mass injection is (Cebeci 

[ref . 131) 

where A is  given by equation  (68)  or  equation (69) . + 
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C. Outer Eddy Viscosity  Expression 

The above expres s ions   fo r   t he   i nne r  eddy viscosity  have  been em- 

ployed i n  combination  wich the  Clauser   outer  eddy v i scos i ty  as modi- 

f i e d  by Klebanoff  [ref, 251 and is expressed in nondimensional form as 

-* 

where bk is t h e   i n c q p r e s s i b l e  boundary-layer  displacement  thickness 
* 

and y is Klebanoff ' s   in termit tancy  factor  

. (81) 

The inner eddy v iscos i ty ,  e:, app l i e s  from t h e  wall outward t o   t h e  

poin t  where c: - B ~ .  For turbulent   f low  the  enthalpy,   v iscosi ty ,  and 

equations of state are given by equations (20 ) - (24 ) ,  and the thermo- 

dynamic and  t ransport   propert ies   for   an  equi l ibr ium  gas  are determined 

by t h e  method given i n  Appendix A. 

+ 

6.1.4 Turbulent Boundary-Layer 

Equations  Expressed in Law-Lees Variables 

Proceeding in  t h e  same manner an f o r   t h e  laminar boundary-layer. 

equations  (Section 6,1.2), the  equat ions  for   turbulent   f low are ex- 

pressed i n  Levpleas var iab les  as: (Cebeci,  Smith,  and Moadlrskis 
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[ref. 121) : 

Continuity 

2 E F  + V ' + F - 0  E 

Momentum 

2 E Z F  S V F  9 B - o  F .n [:e F2] + (C(1 + E+) F')' 

+ CFl2 + CF"] + CFF' 1 - - I 4 
where 

or at the stagnation point 
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6.1.5 Boundary Conditions for t he  Governing  Eauations 

The boundary condi t ions a t  t h e  wall, TI - 0 ,  and a t  the   ou te r  edge 

of t he  boundary-layer, TI = ne, fo r   equa t ions  ( 3 4 ) - ( 4 0 )  and (82) - (86)  

are : 

and 

a t  0 = ne: F 1; g = 1 

6.2 Numerical Solution  Procedure 

The conservat ion  equat ions  for   laminar   or   turbulent   f low  have  been 

solved  using  an  implici t   f ini te-difference scheme. The numerical method 

is  t he  one employed by Davis [ref. 91 and requires   that   the   governing 

equations  be  expressed  in  the  general   parabolic form 

W" + %W' + A2W + A3 + A W = 0 4 5  (88 )  

where W is t he  dependent va r i ab le  and the   coe f f i c i en t s  are functions  of 

5 ,  TI and W. 

In   the   fo l lowing   sec t ions ,   the   conserva t ion   equat ions  are ex= 

pressed in   t he   gene ra l   pa rabo l i c  form, equation ( 8 8 ) ,  and t h e   f i n i t e -  

d i f fe rence  scheme is described. 
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6.2.1 Standard Parabolic Form of the Governin% Equations 

The governing  equations  are  expressed in  the form of  equation 

(88) for a perfect gas or an equilibrium gas mixture as:  

Momentum 

F" + AIF' + A2F + Ag + A F - 0 4 5  

where 

A4 - 2&F/A0 
A0 is defined for laminar and turbulent flow as  

AO 
= c (for laminar flow) 

A. - C (1  + E+) (for  turbulent  flow) 

and 

Enerq 

where 

g" + Alg' + A2g + Ag + A g 0 4 5  

.I-+-" c' A; v 
AI C A. A. 
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A2 - 0 

2 

A3 - 2 He b -  ~1 Pr FF' + (for  a  perfect gas) 
cAO 

2 

A3 H ue C1 [$ + 21 FF' + F' + FFj no (for an equilibrium  gas) 
e 

A. zp C + e+ k] (for  turbulent  flow) 

c1 = 1" 1 
Pr 

Conttnuite 

The aolution of the  continuity  equation is  determined by numerfcal 

integration  of the expression 

"e 
V - Vw - (25 F6 + F) dn I 

0 

after each tteration of the momenfum  and energy equations. The inte- 

gration is performed using  the  trapizoid  rule. 
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6,2.2 Derivation of the Finite-Difference Solution  Procedure 

The f in i te -d i f fe rence  scheme used t o  solve  the.boundary=layer 

which has  been  applied  successfully by a number of   authors;   for  exam- 

ple ,  Davia (rsf.91, Blottner [ r e f ,  11 and Harris [ref. 31. 

The boundary l aye r  is considered as a network  of  nodal points with  

a varying s t e p  size i n  t h e  normal coordinate   direct ion as shown sche- 

mat ical ly  i n  the f i g u r e  below 

1) 

.. . . 
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. ” 

For  convenience, equatAon (88 )  is expressed at  (m,n) and (&l,n) 

as 

and 

If it  is  assumed  that  the  dependent  variable  is known at the 

points (rn,n) and (m+l,n), Taylor  series expansions for Wmt(l-x) gives n 

+ (  ~ w X ) ~  A# 2 [$In 
m 

2 

and 
. .  

where 
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Noting that 

and solving  equations (94) and (95) for I s 1  gives 

or using equations ( 9 2 )  and (93), 

~ a v b  l t e f .  91 approximeteti aquation (973 as 

and evaluated the Ai in equation (88)  at: the points (rn+l,n) Following 

Davis' formulation, the normal  derivatives in equation (88) are te- 

placed by Taylor series expansions for varying step s i z e s  i n  the n di- 

rection at the point *l,n as 
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and 

+ O(An2) 

Evaluat ing  the Ai a t  *l,n and l e t t i n g  

and 

gives  upon subst i tut ing  equat ions (99) and (100) into  equat ion (98) 

A W  + B  W + C  W2 = D * P < n L N - l  
2n-1 2n n n+l n' - 

where 
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and 

A. w, 
+ - [W; + A Wi + A2 W1 ] (1 X )  A3 4n 'n 

Dn n 'n n n n  n A-5 

Assuming t h a t  

W2 = E  W 
n 2n+1 + Fn 

is valid  throughout  the  boundary-layer  (Richtmyer  [ref, 26]),  then 

w2 is given by 
~ n-1 

w2 = E W + Fnml 
n-1 n=l 2* 

Using  equation  (103) in   equa t ion  (101)  and solving for W2 and 
n 

comparing with  equation (102) gives  
! 

and 
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The values  of El and F1 are detemtned by the boundary condition 

f o r  W, 

6.2,3 Spacing of Node P o i n t s   i n   t h e  Normal Coordinate  Direction 

The-f ini te-difference  solut ion  procedure has been  developed f o r  a 

var iable   spacing of t h e  node p o i n t s   i n  the normal (n) coordinate  direc- 

t ion.  This permits a d08e spacing of poin ts  in the   region  near  She 

wall where the   va r i a t ion  o€ € h i d  and  dynamic p rope r t i e s  is grea te s t ,  

The procedure employed I s  tha t   g iven  by Cebeci,  Smith,  and  Mosinskis 

[ref. 121. 

Using t h i s  procedure,   the  ratio of the   ad jacent   in te rva ls  is a 

constant  expressed as 

k=- 
An*-l 

The d i s t ance   t o   t he   n th   po in t  measured  from the wall boundary is 

given by 

where 

N is  the  number of s t r i p s   i n  t he  boundary-layer,  and 0 i s  the   loca t ion  

of t he  boundary-layer  outer  edge, 
e 

The values of the  constant k for   laminar   or   turbulent   f low were 

determined  by  numerical  experiments. A number of so lu t ions  were ob- 

ta ined  for   laminar  and turbulent  boundary l aye r  flows a t  supersonic 
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condi t ions  consider ing  both  adiabat ic  and cold wall casee. The value 

of k was varied  over  the range from 1 t o  1.5 with ne var ied from 4 t o  

12 for  laminar flow and  from 75 t o  200 for   tu rbulen t ' f low.  The r e s u l t s  

of  these test cases were compared with  experimental   data   to   determine 

a value of k which  gave good agreement  with  experimental  data and 

where the   so lu t ion  showed l i t t l e  change fo r   d i f f e ren t   va lues  of ve. 

The values   selected were: 

k m 1.04 and ne = 6 f o r  laminar flow 

k = 1.09 and ne 100 for  turbulent:  flow . " - 

The above values   correspond  to  a value  of N = ZOO i n   equa t ion  (108). 

Similar  tests were made varying N from 50 t o  500. An N of 50 was 

found t o   b e   u n s a t i s f a c t o r y   f o r  most cases, but  values  of N greater   than 

100 did  not  improve the   so lu t ions  which were obtained. 

6.2.4 Convergence Criteria 

A suitable  convergence test may be   es tab l i shed   for   l aminar  

boundary-layer  flows  by  comparing F; a t  successive iterates of t h e  

solut ion,   This   type of convergence test was employed by Davis [ref. 

91 and  Cebeci  and  Smith [ re f .  111. 

For  turbulent flaws, Cebeci  and  Smith  found t h a t  a second  require- 

ment based on successive iterates of  the  boundary-layer  displacement 

thickness was neceasa ry   t o   ob ta in   s a t i s f ac to ry   so lu t ions .  They con- 

t inued   the   i t e ra t fon   procedure   un t i l   bo th  tests were s a t i s f i e d .  

For   the  present   calculat ions  provis ions were made t o   e s t a b l i s h  

convergence by comparison of successive iterates of both F; and g; o r  
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by  comparing successive iterates of both F and g a t  a l l  po in t s   i n   t he  

boundary layer ,  The convergence test are expressed as 

and 

Derivative -% 

Function T e s t  
" 

and 

where k is t h e   i t e r a t i o n  number and cd and are prescribed  values,  

The function test with cf = 0.01  and the  additional  requirement  that  

t he  number of i t e r a t i o n s  a t  the  na7 location  be two or grea te r  was 

found to   be   sa t i s fac tory   for   bo th   l aminar  and turbulent  f lows, A 

value of E - 0,001 was used with t he   de r iva t ive  test, b u t   t h i s  test  

is i n  general   not recommended for   tu rbulen t  boundary-1,ayer calcula- 

t ions 

d 
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6.3 Speci f ica t ion  of Body Geometry 

The geometry  of a given  configuration is considered as a series 

of  segments  of  fourth  order and requires   that   the   coordinates ,   z ,  x, 

and r be given i n  t abu la r  form, Since  t ransverse-curvature   effects  

have  been  neglected i n  the  governing  equations,  provisions  have  not 

been made t o   d i s t i n g u i s h  between d i f f e r e n t  body sect ions.  Thus, some 

inaccuracies are introduced i n  reg ions   near   the   in te rsec t ion   po in ts   o f  

different  contours.   For problems requir ing a spec i t ied   p ressure  

and/or a wall temperature   dis t r ibut ion,   these  data  are entered in tab- 

ular  forni a t  the same po in t s  as the geometry data.  The temperature is 

entered i n  O R  and the   p ressure  is given as P/Poor P/PA. 
1 

To insure  accurate   interpolat ion  and/or   different ia t ion of t h e  

temperature and pressure   da ta   in   reg ions  of la rge   g rad ien ts ,  it is nec- 

essary  to   have a close  spacing of the  coordinate  data.  

For  nozzles, a t  least 30 points should  be  entered  in   the  throat  

region, and for   b lunt   bodies ,  a t   least  50 points  should  be  entered 

for   the  nose  eect ion.  A maximum of 500 points  may be  tabulated,  and 

the  minimum number permitted is 5 .  Best r e s u l t s  were obtained when 

t h e  maximum r a t i o  of a d j a c e n t   s t e p   s i z e s   i n  z were not   greater   than 

1.25. 

The body shapes  which  have  been  considered are blunt  bodies,  

wedges, f l a t   p l a t e s ,  and nozzles. 

6.4 Fluid   Proper t ies  at the  Outer Edge of the  Boundary-Layer 

I n   t h e   p r e s e n t  method fo r   so lv ing   t he  boundary-layer  equations, 

t h e   e f f e c t s  of mass entrainment  of  the  outer  inviscid  vortical   stream- 

l i n e   i n t o   t h e  expanding  boundary-layer on a b lunt  body is neglected. 
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Therefore,  the  edge  conditions may be spec i f ied  by conditions  on  the 

body su r face   fo r   t he   i nv i sc id  f l a t  of t he  gas. The procedures em= 

ploped fo r   spec i fy ing   t he  outer edge  conditions for t h e   d i f f e r e n t  geom- 

etries and  gas  models is discussed in the   fol lowing  sect ions,  

6.4.1 Axisvmmetric Nozzles 

The edge  conditions for nozzle  flows  of a per fec t  or an  equili- '  

brim gas may be Specified by  assuming a one-dimensional  expansion or 

t he  expansion can  be  determined  for a spec i f i ed   p re s su re   d i s t r ibu t ion  

where the   p ressure  is given i n   t a b u l a r  form as ind ica t ed   i n   Sec t ion  

6.3. The procedures employed for t h e   d i f f e r e n t  cases are discussed 

below. 

A. One-Dimensional Expansion  of a Per fec t  Gas 

For a one-dimensional  expansion of a perfect  gas,  tables of Mach 

numbers and the rotresponding mea ratios are computed within  the 

bounhry-lapar mmpu%e5! program u s h g  the relation 

A/A, - 1 I4 

at intervals of 0.03.in Mach number f o r  M < 2 and i n  intervals of 0.05 

f o r  M 2 2. 

After the above  cables'  have been generated,   the Hach number a t  

the   nozzle  exit is determined by f ive   po in t   i n t e rpo la t ion  i n  the  tables 

of area r a t i o  and Mach number with t he  area r a t i o  as the  independent 
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variable, The exit Mach  number is  denoted by M,, 

The free-stream  pressure, temperature, velocity,  density, vis- 

cosity,  and Reynolds number are then computed using  the  relations 

rl 
* 

m 
* 

U, * M, /- 

and 

* P* 
pm - m 

R G M  T: 

* 
+ C  

* *  

* 312 
Trefr 

T, + c 

* * *  
poa u m  

'm 

R -  
em 

* 

37 



* * * 
where 'ref, , Tref,  snd L are reference  values  of  viscosity,  tempera- 
ture and  length, 

Corresponding  to  the  points  in the  geometry  arrays,  tables of the 

edge  pressure and  velocity are  computed in nondimensionalized  form 

using the  expressions 

where 

u e  &To = Te)2 

* * *  * 
T c  

r - r O p m  TO TO 
To * *2 2 *  

Tref L a  (Y-1) M, T, 

T 
I 

0 

Te 1 + *  2 
2 %  

and % is the  local  Mach  number  determined  for  the  area  ratio at  the 

given  point in the  geometry  arrays. 

At a  local  solution  station x = x1 + Ax, Pe, ue and F$ are deter- 

mined by interpolation,  and  Te, pe and p are  computed  using e 
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or 

Te - To - ue/2 2 

n L -  'e 
'e y-1 Te 

I- 
1 +; 3/2 
Te f 'E T€l 

.(123) 

where 

* * 
'e  'e 

Pref p- 
'e * I-=- * 

and 
* 
'e 

'ref 

I- 
'e * 

due The velocity  derivative dx is  evaluated  numerically. 

B. Pressure  Distribution  Specified  for  a  Perfect Gas Solution 

For  solutions where the  pressure  distribution is  input to the 

computer program, the  outer  edge  conditions  are  computed  in the same 

manner as for  the  one-dimensional  expansion  solution with the  exception 

that the Mach  number  table  is  computed  from  the  input  pressure  distri- 

bution  using 
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After  computing the  Mach number array  using  equation (125 ) ,  equa- 

t i ons  (116)-(124) are evaluated  using  the  local  Mach number data cor- 
due responding to   t he   g iven   p re s su re   d i s t r ibu t ion ,  and - dx is evaluated 

numerically. 

C. One-Dimensional Expansion of a Reactinq 

Gas i n  Chemical  Eauilibrium 

-The  boundary-layer  edge  conditions for the  equilibrium  gas case 

were determined  by the   so lu t ion  of the  inviscid  equat ions of motion 

for   the   g iven-mixture  of perfect  gases.  The da ta  which  must be given 

f o r   t h e  boundary-layer so lu t ion  are: 
\ 

These da ta  are t abu la t ed   fo r  use with a table-look-up  procedure.  For 

a one-dimensional  expansion of t he  gao mixture,   the area r a t i o  is used 

as the  independent  variable  to  determine  the  local  edge  conditions  for 

the  given body  geometry. Since  the area r a t i o  is not  a monotone func- 

t ion  over   the  length of the  nozzle,  i f  was found t o . b e  more satis- 

f a c t o r y   t o  create a secondary  expansion data set on a sc ra t ch   un i t  ex- 

pressed in terms of z o r  x. The loca t ions  of z and  x were determined 

f o r  a given A/A by in te rpola t ion  and the  secondary  data set was writ- 

t en  as unformatted  records  in  the  order 
t 

2, x, M, U , 3 and % * 

This operation is performed  within  the  boundary-layer program  and re- 

qui res  no addi t ional   preparat ion o€ the  expansion  data.   In  addition 

40 



t o   t h e  ex'pansion data   tape,  a tape   un i t  is requi red   for   the  tables of 

thermodynamic  and transport   properties  of  the  equilibrium  gas  mixture.  

These t ab le s  are written a t  constant 8 with  the  temperature  decreasing, 

The d a t a   i n  each table are wr i t t en  as unfonnat ted  records  in   the form 

(P; T , h, p, l~ , cpD Pr). The expansion  data and t h e  tables of 

thermodynamic  and t ransport   propert ' ies  were obtained  using two modified 

versions  of  the computer  program  developed by Lordi et al. [ re f .  203. 

* % %  * 

A descr ip t ion  of these  modif icat ions are given i n  Appendix A, 

After  the  secondary  expansion data set has   been  wri t ten,   local  

values  of M, U , P and % are determined  by  interpolation  with  either 

z o r  x as the  independent  variable.   With  the  local  values of 8 and h" 
as independent   var iables ,   the   local   values   of  T , p, IJ , c and P r  are 

found by i n t e rpo la t ion   i n   t he   t ab l e s  of  thermodynamic  and t ranspor t  

propert ies .  The nozzle exit conditions are taken as the  free-stream 

conditions and the   re fe rence   condi t ions   re ta in   the  same d e f i n i t i o n s   i n  

the  dimensional  form  with  the  exception  of uref. The reference  vis-  

*. 'L 

* ' L  * 
P 

* 

cos i ty   for   the   equi l ibr ium cases may be  chosen a r b i t r a r i l y  and  does 

not  necessarily  correspond  to  the  reference  temperature and reference 

pressure. The re ference   v i scos i ty  employed is computed using  Suther- 

land 's  law. 

D, EauiHbrium Gas Solut ions  with  the  Pressure  Distr ibut ion Given 

I f   t h e   p r e s s u r e   d i s t r i b u t i o n  is  given,   the   local   value of P is 
'L 

determined by in t e rpo la t ion   i n   t he   g iven   p re s su re   d i s t r ibu t ion  table. 

With t h i s   v a l u e  of 8 as the  independent  variable,   local  values of M, 
U and h are determined  by  interpolation of the  data on the  expansion 
* n4 
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data  tape, It is not  necessary  for P t o  be  a  monotone  function, The 

remaining  edge  conditions are determined  by  interpolation  in  the 

tables  of  thermodynamic and transport  properties  with P and  h as the 

independent  variables  as  in  paragraph C above. 

% 

'I, % 

6 .4 .2  Blunt - Bodies 

The solution of the boundary-layer  equations for  flows  over  blunt 

bodies  requires  that  the  pressure  distribution  be  specified.  The  re- 

maining  edge  conditions  are  determined  for  a  perfect  gas or an equili- 

brium  mixture  of  perfect  gases  as  discussed  below, 

A. lsentrooic  Expansion  of  a  Perfect  Gas Along 

the  Body  'Streamline  From the Stagnation  Point 

For these solutions, the  pressure  distribution is entered  in  the 

table a8 P/PA where PA .is  the  stagnation  pressure  behind  a normal. 

shock  expressed in nondimensionalized form as 

P:, - 
The  reference  conditions  are  based  on  the  flow  properties  ahead  of  the 

bow shock. Since  the  inviscid flow along  the  body  streamline  is  isen- 

tropic, the edge  conditions  are  computed  in the same  way  as  for  a noz- 

zle  with the  pressure  distribution  given  and is described in paragraph 

C of  Section 6.4.1 above.  It is noted  that the expansion is from  the 

stagnation  conditions  behind the normal shock. 
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B, Isentropic  Expansion of an  Equilibrium Gas 

Along the  Body Streamline from the  Stagnat ion  Point  

For t h i s  case, the  equilibrium  expansion  data are determined f o r  

the   s tagnat ion   pressure  and  temperature  behind a normal shock f o r   t h e  

given  mixture  of  perfect  gases  and free-stream conditions,  The free- 

stream and reference  condi t ions  with  the  except ion o f  the   re fe rence  

v i scos i ty  are determined by t h e   f l u i d   p r o p e r t i e s  ahead of t h e  bow 

shock, The edge conditions at  local   points   a long  the body are deter- 

mined i n  t he  same manner as for an   equi l ibr ium  so lu t ion   for  a nozzle 

with the   p ressure   d i s t r ibu t ion   g iven  and is discussed i n  6,4,1 D, 

6 , 4 , 3  Wedges and F l a t   P l a t e s  

The edge condi t ions   for  wedges  and f l a t   p l a t e s  are constants  cor= 

responding  to  conditions  behind  an  oblique  shock  or  the  free-stream 

condi t ions  respect ively.  The computer  program for  the   so lu t ion  O€ t h e  

boundary-layer  equations is  s u i t a b l e   f o r   b o t h  wedges and f l a t   p l a t e s  

i f  a perfect   gas  is  considered, The so lu t ion  of  wedges for   an   equi l i -  

brium  gas  requires  modification  of the boundary-layer  computer  program, 

Thus, o n l y   f l a t   p l a t e s  are considered  for   equt l ibr ium  chemistry  soh-  

f ions ,  The procedure  for  determining  the  edge  conditions for a per- 

fec t   gas  and an  equilibrium  gas  mixture is  discussed  below, 

A, Edge Condit ions  for   Flat  Plates snd 

WedRes f o r  a Per fec t  Gas Solution 

The pressure,  temperature,  and  velocity a t  t h e   o u t e r  edge  of t h e  

boundary-layer are computed from the  obl ique  shock  re la t ions and are 

expressed  in  nondimensional form by t h e   r e l a t i o n s  
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2y M, 2 2  s in  u - (y-1) 

[2y M, s i n  u - (y-1) J [(y=l) M, s i n  cr + 2 J 

Cy-1) .", (y+l) M, sin2 u 

2 2  2 2  

Te = 2 2  (127) 

and 

The dens i ty  and v i scos i ty  are computed using  equations (122) and  (123) 

o r  (124) 

B, Flat-Plate  Solutions  for  Equilibrium Gases 

The so lu t ion  of f l a t   p l a t e s   i n   an   equ i l ib r ium  gas   r equ i r e s   t he  

uae of the   t ab l e s  of thermodynamic  and t r anspor t   p rope r t i e s   fo r   t he  

given gas mixture (Appendix A).  The free-stream  pressure,  temperature, 

and ve loc i ty  are input   da ta  t o  the boundary-layer  computer  program, 

Using the free-stream  pressure and temperature as independent  vari- 

ables, the   va lues  of h,, p,, p,, and c are determined by the   use  of 
* * *  2: 

Pm 
i n t e r p o l a t i o n   i n  the t a b l e s  of thermodynamic  and t ranspor t   p roper t ies ,  

6.4.4 Evaluation of the Longitudinal  Coordinate+ 

The coordinate 5 is evaluated by equation (26) numerically  using 

a modified  Simpson's r u l e  (Davis [ r e f .  9 ] ) ,  and is expressed a8 
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where t h e   s u b s c r i p t s   r e f e r   t o   t h e  edge  conditions a t  the   po in ts  x 

xm.+ 2 , and x $. Ax respect ively,  . 

m' 
Ax 

m 

6,.5 S o l u t i o n   f o r   t h e   I n i t i a l   P r o f i l e  Data 

The equations  governing  the  laminar  or  turbulent  boundary-layer 

flow  of a perfect  gas  or  an  equilibrium  mixture  of  perfect   gases 

reduce  to  a system of ordinary  non-l inear   different ia l   equat ions a t  

x - 0 However, for   ful ly   developed  turbulent  flow, the  eddy v i scos i ty  

cannot  be  evaluated a t  x = 0 ,  f o r   f l a t   p l a t e s  or  nozzles. The limit- 

ing form of   the   d i f fe ren t ia l   equa t ions  are employed.at x = 0 fo r   b lun t  

body  flows. The procedures   used   to   ob ta in   the   s ta r t ing   p rof i le   da ta  

are discussed  belowr 

6,S.l I n i t i a l  P ro f i l e s   fo r   t he   So lu t ion  

of t he  Laminar  Boundary-Layer Equations 

To s t a r t   t h e   s o l u t i o n  of  the  boundary-layer  equations,   init ial  

guesses  of  the  profiles  for  the  dependent  variables F, g, and V are 

required. A t  the   leading  edge  or   s tagnat ion  point ,   the   equat ions are 

ord inary   d i f fe ren t ia l   equa t ions ,  and t h e   i n i t i a l   p r o f i l e   d a t a  are 

determined by an i terat ion  procedure  using  the  implici t  f in i te -  
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di f fe rence  scheme developed in 6.2.2, 

I n i t i a l   g u e s s e s  are made f o r   t h e   p r o f i l e s  and for t h e   f i r s t  itera- 

t ion,   These-est imates  are denoted by t h e   s u b s c r i p t s -  ( )1 and (--- )c  

respect ively and the  k+l iterate is denoted by the   subscr ip t  ( )2 .  

The i n i t i a l   g u e s s e s  of the   p rof i le   da ta   a re .assumed  to   have   the  

forms given be lmt  

a t  9 e ne at  n - ne 

F; - F" = - e 
-n 

C 
F; - 0 

The solu t ion  of the   cont inui ty   equat ion  is asaumed as 

and the  temperature   dis t r ibut ion I s  computed from the  g pro f i l e   u s ing  

the def in i t i ons  

8 . I -=-  T h  
Te he 
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1 2 2  

He he + ue 1 2  
g r - r  H h + T u e F  

or 

U 
2 

e + - -  1 e F 2  
he 

1 ue 
he 

g =  2 

1 +" 

Solving  for 8 gives 

and 

For a  perfect  gas 

and the Chapman-Rubesin factor, C, Is assumed unity  across  the boundary= 

layer 

Using the above guesses of the  profile  data,  the governing equa- 

tions are solved to determine F2, F;,  F;, g2, g;, and g" The sub- 

scripted  variables ( and ( >c  are set equal.to the  variables with 
2' 
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subsc r ip t  ( )2 and new values of 0, e', - 'e , Vc, and C are then 

computed where 
P 

vc = (25 FcE + PC) drl 
0 

C - A = &&. (Sutherland'e law) 
'e "e (e + 3 

o r  

The procedure is r epea ted   un t i l  the convergence criteria of sec t ion  

6.2.4 is s a t i s f i e d ,  

For an equilibrium gas, t he  i n i t i a l  guesses  of  the  profile  data 

are assumed t o  be the   prof i le   data   corresponding  to   the  converged 

s o l u t i o n   f o r  a perfect  gas  described above.  Using the   per fec t   gas  

p r o f i l e s  of F and g, the  remaining thermodynamic  and t r anspor t  prop- 

erties are determined by use  of  the  table-look-up  procedure, Deri- 

vatives of e and C are evaluated  numerically  for  the  equilibrium gas. 

The i terat ion  procedure is t he  same as fo r   t he   pe r f ec t   gas  case. 

6.5.2 I n i t i a l   P r o f i l e s   f o r   t h e  

Turbulent Boundary-Layer Eauations 

The so lu t ion  of f l a t   p l a t e s ,  wedges, or  nozzle  flows  assuming 

fully  developed  turbulent  f low assumes t h a t   t h e   p r o f i l e s  a t  x = 0 and 

x = 0.001 are similar, This procedure  has  been  adopted  because  the 
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values  of E are zero a t  x - 0. With this   except ion and assuming an 

i n i t i a l   p r o f i l e   f o r  E as zero, t h e  s tar t ing  procedure is the same as 

for the  laminar boundary layer .  

+ 
+ 

An a l t e r n a t e  method fo r   s t a r t i ng   t hese   so lu t ions  is t o  use   t he  

l a m i n a r   s t a r t i n g   p r o f i l e  at x - 0 and assume an  instantanequs  t ransi-  

t i on   t o   t u rbu len t   f l ow a t  x > 0.001, Both  methods have  been  used  and 

t h e   d i f f e r e n c e s   i n   t h e   r e s u l t i n g   s o l u t i o n s  are ins ign i f i can t .  

For b lunt  body so lu t ions ,   t he   t u rbu len t   s t a r t i ng   p ro f i l e s  are 

determined a t  x - 0 us ing   the   l imi t ing  form of the  governing  equations. 

The i n i t i a l   g u e s s e s  of t h e   s t a r t i n g   p r o f i l e s   f o r   t h e   e q u i l i b r i u m  

so lu t ion  is determined  from t h e  converged p r o f i l e s   f o r  a perfect  gas.  

Using. these  prof i les ,  the  i terat ion  procedure is continued  using the  

equilibrium  gas  properties  unt5l  the  convergence tests are s a t i s f i e d .  
- . _ .  

6.6 Boundary-Layer Paramaters 

The de f in i t i ons  of t he  boundary-layer  thicknesses,  skin-friction 

coef f ic ien t ,   hea t   t ransfer ,   hea t   t ransfer   coef f ic ien ts ,  and Stanton 

numbers which  have  been  used i n   t h e  boundary-layer  calculations are 

presented in t h i s   s e c t i o n .  Both the  dimensional and  nondimensional 

expressions are given, 

Velocity o r  Boundary-Layer Thickness 

U 
* 
* ‘ I =  

The veloci ty   thickness ,  6, is assumed t o   b e   t h e   v a l u e  of y a t  

0.995, and is determined by i n t e r p o l a t i o n   i n   t h e   v e l o c i t y   p r o f i l e  

* 

U e a r ray  

Incompressible  Displacement  Thickness 

The incompreasible  displacement  thickness is computed us ing   the  
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two-dimensional definition 

* 
6; - T' 

0 

[I - 4 dr* 

or 

Compressible Displacement Thickness 

Two-dimensional 

* 
b*" 

0 

or 
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Axiepmmetric t 

The axiaymmetric compressible displacement: thickness is  approxi- 

mated  arr; (Cebeci and Moeinskia- [ref. 271): " - 
-.- . 

* * 

* 
r 

or 

Momentum Thickness : .. 

* 

or 

Heat Transfer Ratet 

In dimensional  variables 
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or 

In nondimensional f o m  

'.* 

or in Levy-Lees variables 

j 'e 'w He 'e ue ' 
R " '  prW [%I W 

k is converted t o  BTU/ft2-aec as 

'* * *3 
R gW 'ref Uref 'VD /778 

Film Coefficients: 

** * 
c" 

BTU/ln -sec-'R 2 
h g l  = * * 

Hw - HAtr (778)  (144) 

or 

i * *  * 

52 



a 32.17 lbm/in -sec * * 144 
2 

cHw HAw) 

or 

b * * 
% “VD ’ref Uref 32.17 lbm/in -sec 2 

hg2 a (Hw - HAW) 144 

Stanton Number  Definitions: 

A, Based on free-stream conditions 

% St, = - * *  * * 
p, U- (He - Hw) 

or 

B ,  Based on edge conditions 

’* 
% Ste = - * *  * * 

p, ue (He - Hw) 
or 

s, Ste - - p, ue (He - Hw) 
Heat Tranefer Coefficients: 

A. Based on free-stream conditions 
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'* 
I- 9, 

%? * *  * * 
p, U- (HAW - Hw) 

or 

B. Based on edge  conditions 

'* 

or 

Skin-Friction  Coefficients: 

A. Based  on  free-stream  conditions 

or 

B, Based on edge conditions: 

* 
?W 

e 'e ue 
cf 

P" * *2 
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or 

cf ,  
Cf - - 

e PC? ue 
2 
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VII. RESULTS AND DISCUSSION 

The impl ic i t   f in i te -d i f fe rence  scheme developed i n  Chapter V I  has 

been  appl ied  to   obtain  solut ions  of   laminar  and turbulent  boundary- 

layer  f lows  of  perfect   gases and equi l ibr ium  gas   mixtures   over   f la t  

p la tes ,  an hyperboloid, a spherically  blunted  cone, and i n  axiaym- 

metric nozzles. 

Solutions of perfect  gas  turbulent;   f lows  using  different  expres- 

s ions   fo r   ' t he   i nne r  eddy v i scos i ty  law are presented  in   Sect ion 7.1, 

and are compared with  experimental   data  and/or  other  numerical   solu- 

t i ons  €or cases where  these  data were available. Solut ions  using  the 

equilibrium  gas  option are presented  in   Sect ion 7.2, and the   so lu t ion  

of  boundary-layer  flows  with mass i n j ec t ion  are presented  in   Sect ion 

7.3. 

The numerical   solutions  presented assume e i t h e r   f u l l y  developed 

turbulent  o r  laminar flow; however the  boundary-layer  computer  pro- 

gram described by Miner,  Anderson,  and Lewis  [ r e f ,  281 provides 

opt ions €or e i t h e r  an  instantaneous  or a cont inuous  t ransi t ion from 

laminar to   t u rbu len t  flow. The cont inuous  t ransi t ion model is based 

on the   exper imenta l   resu l t s  of Owen [ r e f .  291 and is d iscussed   in   the  

repor t  on t h e  computer  program. 

7.1 Per fec t  Gas Turbulent Boundarv-Layer  Flows 

Solut ions  of   turbulent   f lows  over   f la t   p la tes  and i n  axisymmetric 

nozzles  using the inner  eddy v i scos i ty  laws of Van Driest, equation 

(70). Cebeci and Smj.th, equation (721, absolute   value  of   the  pressure 

gradient,   equation (73), and Reichardt,  equation (77), are presented 
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i n   t h i s   s e c t i o n .  The inner  eddy v i s c o s i t y  law proposed  by  Patankar 

and  Spalding,  equation (731, was found t o  be  unsat isfactory  for   f lows 

having a s igni f icant   favorable   p ressure   g rad ien t  and is nor; considered. 

7.1.1. Perfpct  Gas_S.olu.tions for   Turbulent  Flows Over F l a t   P l a t e s  

For f la t -p la te   f lows   the   inner  eddy v i scos i ty  laws expressed by 

equations (70)-(74) are i d e n t i c a l  and are r e f e r r e d   t o  as t h e  Van 

Drieet model. The inner  eddy v i scos i ty  law given by equation  (77) is 

r e f e r r e d   t o  as the  Reichardt model, 

Three  f la t -plate   solut ions are presented  corresponding  to case 

numbers 20, 26, and 62  of the experimental   data  given by Coles  [ref.  

301. The r e s u l t s  of the  present  numerical  method of so lu t ion  are 

compared with Coles'  experimental  data  and the  so lu t ions  of Van Driest 

[ re f .  221 and  Dorrance [ref. 311. The free-s t ream  condi t ions  for   the 

th ree  cases are given  in   Table  I. The free-stream Mach numbers f o r  
. .  

casea 20, 26, and 62 were 3,701,  2,578,  and 4.544 respect ively,  and 

the p l a t e s  were assumed to   be   ad iaba t i c .  

Boundary-layer  displacement  thicknesses  predicted  using  the Van 

Driest:  and  Reichardt  eddy v i scos i ty  models are compared with  Coles' 

exper imenta l   da ta   in   F igure  2. The displacement  thickness  predicted 

us ing   the  Van Driest and Reichardt eddy v i scos i ty  model were found t o  

d i f f e r  by less than 3% f o r   t h e   t h r e e  cases, but the   predicted  values  

of displacement   thickness   differ  from Coles' experimental   data by as 

much as 20X. The numerically  determined  displacement  thickness is  l e a s  

than  the  experimental   value  in  a l l  t h r e e  cases. The numerical   resul t  

is i n  good agreement  with  experiment  for Case 62. 
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The numericalxy  determined  velocity  profiles a t  x = 21.48 i n ,   f o r  

Case 20 are presented i n   F i g u r e s  3 and 4. The r e su l t s   u s ing   e i the r  

eddy v i scos i ty  model are i n  good agreement  with  Coles'  experimental 

data.  Figure 4 shows the  solut ion  given by Van Driest [ r e f .  221. 

Figure 5 shows t h e  eddy v iscos i ty   p rof i les   p red ic ted   us ing   the  Van 

Driest and  Reichardt eddy v i scos i ty  models a t  x - 21.48. The d i f -  

f e r e n c e   i n   t h e  two models is no t   s ign i f i can t .  

The predic ted   sk in- f r ic t ion   coef f ic ien ts   for   the   th ree  cases are 

compared wi th   t he   so lu t ion  of  Dorrance  [ref. 311 and Coles'  experi- 

mental   data  in  Figure 6 .  The sk in - f r i c t ion   p red ic t ions   fo r  Cases 20 

and 26 are i n  excellent  agreement.with  both  the  experimental  data and 

Dorrance's solutions, For Case 62, the  present  method of so lu t ion  is 

i n  good agreement  with  the  experimental   data  points  for Reynolds num- 

bers   g rea te r   than  3 x lo6,  b u t   f o r  Re, = 1.7 x 10  the  present  numer- 

ical  so lu t ion   pred ic t s  a sk in- f r ic t ion   coef f ic ien t  which i s  approxi- 

mately  15%  lower  than  the  experimental  value. The present method of 

so lu t ion  is i n  b e t t e r  agreement  with  the  experimental   data  for  this 

case than  the  solution  of Dorrance. 

6 

The above r e s u l t s  are representa t ive  examples  of t u rbu len t   f l a t -  

p l a t e   so lu t ions  and i n  a l l  cases considered  the  numerical   results were 

not   s ignif icant ly   inf luenced  by  the  choice of the   inner  eddy v i scos i ty  

law. However, the  use  of  the  Reichardt  inner law reduced  the comput- 

ing time by a f a c t o r  of approximately  10 (see Section 7.1.3). 

7.1.2 Turbulent Flow o f - P e r f e c t  Gases i n  Axismetric Nozzles 

The present method of  solution  has  been  used to   so lve   t h ree  axisym- 

metric nozzles, and the results are compared wi th   the   in tegra l  method 
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of so lu t ion  developed by Elliott, Bartz,  and Silver [ r e f ,  151 and ex- 

perimental   data where t h e  data were ava i lab le ,  The inner  eddy vis-  

cos i ty  laws of Van Driest, equation ( t o ) ,  Cebeci  and  Smith,  equation 

(72),   absolute  value of the  pressure  gradient,   equation  (73),  and 

Reichardt,  equation (771, have been considered for the  sample case 

given by E l l i o t t ,  Bartz, and Silver [ r e f ,  151, 

A, El l io t t ,   Ba r t z ,  and Silver Sample Case 

The problem  conesdered cons i s t s  of a 30’ con ica l   i n l e t   s ec t ion ,  a 

c i r c u l a r  arc throa t   sec t ion   wi th  a throa t   rad ius  of 0,885 i n ,  and a 

15’ conical   d ivergent   sect ion,  The reservoi r   p ressure  and temperature 

were 300 p s i a  and 4500’R respec t ive ly ,  The s p e c i f i c   h e a t   r a t i o ,  y, 

was assumed t o  be 1,2 and t h e  wall temperature was assumed t o  be a 

constant;  value of 1145’R, The d a t a   f o r   t h i s  case are given in Table 

11, and the  nozzle  geometry is shown i n   F igu re  7, 

Eddy v iscos i ty   p rof i les   p red ic ted  a t  the  nozzle   throat   using  the 

€our  eddy v i scos i ty  models are shown i n   F i g u r e  8. In   t he   r eg ion   nea r  

t h e  wall, n < 0,4, the eddy viscosi ty   predicted  using  the  four   inner  

laws are e s s e n t i a l l y   i d e n t i c a l ,  The Cebeci  and  Smith  inner law (72) 

pred ic t s  a gecond zero  value  of E: a t  II = 1,2  result ing  from  the  pres- 
+ 

sure gradient  tam y/p being equal and opposite i n  s i g n  to ‘cw/p, 

It is noted t h a t  the  solution  using  the  Patankar and Spalding  expres- 

sion,  equation  (71),   fails   upstream of the  throat: as a r e s u l t   o f   t h e  

square root: term being  negative,  By replacing the  aum 

dP 
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Cebeci  and  Smith  [ref. 111 were success fu l   i n   ob ta in ing   so lu t ions   t o  

problems  having a s igni f icant   p ressure   g rad ien t .   This  model, equation 

(72), r e s u l t s   i n   s u b s t a n t i a l l y  smaller values  of c+ f o r  most  of  the' 

boundary-layer  than is given  by  the Van Driest Law, equation (70), t he  

absolute   value of the   pressure  gradient   equat ion (73) and the  Reichardt 

Law, equation (77) . The values  of E' corresponding  to   the Van Driest 

expression and the  expression  using  the  absolute   value  of   the  pressure 

g rad ien t   d i f f e r  by less than 3%, and the  E+ corresponding  to  the  outer 

law, equation (79) , II > 1 r 7, a l s o  d i  f f  ets  by less than 3%. I n   t h e  

sublayer,   the  Reichardt  expression,  equation (77), predicts  values  of 

E* which are 1 0   t o  20% larger   than  those  given by equations (70) and 

(73), but  above the  match point   with  the  outer  law, 0 = 1.4, c+ is 

near ly   the same as when using equation (70) or equation (73) f o r   t h e  

inner  law. It is  emphasized t h a t   t h e   o u t e r  eddy v i scos i ty  law is t h e  

same express ion   in  a l l  cases, 

The resu l t ing   p rof i les   o f   ve loc i ty  and temperature  differed by 

less than 5% for   the   so lu t ions   ob ta ined   us ing   the   d i f fe ren t   v i scos i ty  

lawsr The boundary-layer  paramaters 6 ,  6 , 0 ,  cf , etc. also  agreed 

to   w i th in  54. I f   t he   i nne r  law of  Cebeci and  Smith is excluded i n   t h e  

* 
aD 

comparison, the   resu l t ing   so lu t ions   d i f fe red  by less than 3%. These 

resu l t s   ind ica te   tha t   inc luding   the   p ressure   g rad ien t  term in  the   inner  

law had l i t t l e  inf luence upon the  eddy v i scos i ty   p ro f i l e s ,  and  had 
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e s s e n t i a l l y  no inf luence upon the resu l t ing   so lu t ion .  

As a r e s u l t  of t h e  above, and the  formulations of equations (71) 

and  (72) fo r   t he   i nne r  law, these  expressions were dropped  from fu r the r  

consideration. The r e s u l t s  which are discussed  below were obtained 

using  the Van Driest or   Reichardt   expression  for   the  inner  eddy vis- 

cos i ty  law. However, as in  the  previous cases, use  of  the  Reichardt 

inner law resu l ted  in a substant ia l   reduct ion  of   the computer time re= 

quirement (see Section 7.1.3). S ince   the   d i f fe rences   in   these   so lu-  

t i o n s  were i n s ign i f i can t ,   t hese   da t a  are shown as a s ing le  curve. 

The heat   t ransfer   coeff ic ient ,   bouadary-layer ,  momentum, and dis-  

placement thicknesses  predicted by the  present   numerical   solut ions are 

compared i n  Figures 9-12 with the resu l t s   ob ta ined  by El l io t t ,   Ba r t z ,  

and S i lve r   [ r e f .  151 us ing   an   in tegra l  method of   solut ion,  The solu- 

t ions  using  the  present  numerical  method and t h e   i n t e g r a l  method d i f f e r  

by  up t o  30%; however it should be  noted,   that   the   solut ions  using  the 

i n t e g r a l  method can be  varied  over a wide range by changing t h e  assump- 

t i ons  which must be made r e l a t i n g   t o   t h e  nominal  entrance  conditions. 

S ince   t he   s t a r t i ng   p ro f i l e s   fo r   t he   p re sen t  method are determined  from 

the   so lu t ion  of the  governing  equations,  direct  comparison of t he  two 

methods is not  possible, a l so  i t  is not  clear what assumptions  should 

be made f o r   t h e   i n i t i a l   c o n d i t i o n s  necessary f o r   t h e   i n t e g r a l  method 

i f   exper imenta l   da ta  were not: ava i lab le   before   the   ca lcu la t ions  are 

made. Because of the   a rb i t ra r iness   o f   the   so lu t ion   us ing   the   in tegra l  

method, t h e  agreement of t h e  two solution  procedures is considered. to  

be  adequate, 
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B. NASA-Lewis Case 2a (Boldrnan et al. [ref.  161) 

The nozz le   conf igura t ion   cons is t  of a 30" conical  convergent  sec= 

t ion ,  a c i r c u l a r  arc throa t   sec t ion ,  and a 15"  conical  divergent sec- 

tion. The throa t   rad ius  is 0.746 in.,  and the  s tagnat ion  pressure and 

temperature were 300 ps ia  and 970"R respectively.  The test conditions 

are g iven   i n  Table 111. The geometry is shown i n   F i g u r e  13, and the  

pressure  distribution  corresponding  to a one-dimensional  expansion  and 

the  experimental   data are shown i n  Figure 14. The experimentally 

determined wall tempera ture   d i s t r ibu t ion  is  shown i n  Figure 15. 

So lu t ions   t o   t h i s  problem were obtained  using  the Van Driest and 

the  Reichardt  expressions,   equations (70) and (77), fo r   t he   i nne r  eddy 

v i scos i ty  laws, and as in   t he   p rev ious ly   d i scussed   E l l io t t ,   Ba r t z ,  and 

S i lve r  sample case, the   d i f f e rences   i n   t he   so lu t ions  were ins ignf f i -  

cant. However, the   so lu t ion   us ing   the  Van Driest inner  law required 

approximately  10 times more computing time than was necessary  using 

the  Reichardt  inner law (see Section 7.1.3). 

The predic ted   hea t - t ransfer   coef f ic ien t   us ing   the   p resent  method 

of  solution i s  compared with  the  experimental data and the   so lu t ions  

obtained  using  the  El l iot t ,   Bartz ,  and S i l v e r   i n t e g r a l  method in   F igu re  

16. The present method of so lu t ion  is i n   e x c e l l e n t  agreement  with  the 

experimental   data   in   the  throat   region and  downstream. Differences of 

up t o  20% between the   p red ic ted  and experimentally  determined  heat- 

t r ans fe r   coe f f i c i en t  are noted in   t he   subson ic   r eg ion  of the  nozzle.  

The near  discontinuous  change in   the  experimental   value of the  heat-  

t r ans fe r   coe f f i c i en t  a t  z = 1.97 is  the   resul t   of   the   temperature  tabu- 

l a t e d  in t h i s   r eg ion  (see Figure  15),  and  also  the  experimental  pres- 

su re   da t a  were not smooth in   t h i s   r eg ion .  For the  present   calculat ions,  
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these   da ta  were smoothed i n  the region 1.9 z 5 2.5. The i n t e g r a l  

method of so lu t ion  is s e e n   t o   r e f l e c t  a strong  dependence upon the  

s t a r t i ng   cond i t ion  asoumptions. The two solut ions  presented  using  the 

i n t e g r a l  method d i f f e r  from  each  other by as much as 50%. 

C. AEDC Hotshot  Whd  Tunnel  Nozzle 

The problem  considered  corresponds t o  t h e  case r e f e r r e d   t o  as 

"Hotshot 1" by EdenLield [ r e f ,  171. The nozzle geometry, wall enthalpy 

and pres su re   d i s t r ibu t ion  are shown i n   F igu res  17-19, The operating 

conditions are given in Table I V ,  In th i s   s ec t ion   t he   expe r imen ta l  

p reesure   d i s t r ibu t ion  ahown i n  Figure  19 was not  used, The r e s u l t s  

presented assume a one-dimensional  axpansion of nitrogen.and  the  speci-  

f i c   h e a t  ratio, y, was taken as 1.4. The experimental wall enthalpy 

d is t r ibu t ion ,   F igure  18, f o r  20 milliseconds of tunnel   operat ion was 

used, The s tagnat ion  pressure and temperature were 11,500 p s i  and 

5400"R. The nozz le   cons is t  of loo and 5' converging  conical   in le t  

sect ions,  a f a i r e d  ci-rcular arc throa t   sec t ion ,  and a 5 O  conical   d i -  

vergent  section. The throa t   rad ius  is 0.055 in. 

Attempts t o   s o l v e   t h i s  problem  using  the Van Driest expression, 

equation  (70),   for  the  inner eddy v i s c o s i t y   r e s u l t e d   i n   a n   i n s t a b i l i t y  

a t  z / r  = loo,* When the  Reichardt   inner  eddy v i scos i ty  law, equation 

(77). was used a complete  solution was obtained. The so lu t ions  ob- 

ta ined are compared for   va lues   o f  z / r  up t o  100 i n   F i g u r e s  20-23. 

* 

* 

Figure 20 shows t h e  eddy v i s c o s i t y   p r o f i l e s   f o r   z / r   i n   t h e   r a n g e  
* 

from 7 t o  80,  Dif fe rences   i n   t he  eddy v iscos i ty   us ing   the  two models 

*This  applies only i f   t h e   v e l o c i t y   d e r i v a t i v e   i n   e q u a t i o n  (70) is 
evaluated  implici t ly  (see Section 7.1.3). 
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d i f f e r  from 5 t o  20X with   the  larger differences  being a t  s t a t ions   nea r  

the  nozzle  throat.   Heat-transfer rates predicted  using  the two eddy 

v i scos i ty  models are s h a m  i n  Figure 21. For t h i s  problem, the  Van 

Driest inner  law resu l ted  i n  heat- t ransfer  rates which are approximately 

10% higher   than  the  predicted  heat ing rates using  the  Reichardt  inner 

law in   the   reg ion   near  and upstream  of  the  throat. Downstream of  the 

th ros t ,   t he  Van Driest model oscil lated  about  the  solution  obtained 

using  the  Reichardt  inner eddy v i scos i ty  law. The displacement  thick- 

ness   predict ions  using  the two inner  eddy v iacos i ty  laws were near ly  

i d e n t i c a l  and are shown i n  Figure 22. 

The computer t ime  required  to   obtain a s o l u t i o n   t o  a given  axial  
* 

posi t ion,  z / r  , i s  shown i n   F i g u r e  23. The c u r v e s   i l l u s t r a t e   t h e  time 

requirement i n  terms of the   t o t81  number of i t e r a t ions .  The use of 

t h e  Van Driest inner  law required  approximately  f ive times as many 

i t e r a t i o n s   t o   o b t a i n  8 so lu t ion   to   z / r  - 100 as was necessary  for   the 

complete  solution  using  the  Reichardt  inner law.* 

* 

The problems  discussed i n  t h i s  section  have  demonstrated  that  the 

choice  of  the  inner eddy v i scos i ty  law Bad l i t t l e  inf luence upon the  

r e s u l t i n g   s o l u t i o n   f o r  cases where  convergence was obtained, and t h a t  

the  computing time requirement was considerably less when the  Reichardt 

expression was used for the  inner  law (see Section 7.1.3). For the  

cases where  experimental  data were ava i l ab le ,   t he   r e su l t s   ob ta ined   w i th  

the   p resent  method of so lu t ion  were i n  good agreement  with  these  data. 

*This app l i e s   on ly   i f   t he   ve loc i ty   de r iva t ive   i n   equa t ion  (70) is  
evaluated  implici t ly   (see  Sect ion 7.1.3). 
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7.1.3 Revised  Evaluation  of  the  Inner Eddy Viscosity Laws 

Af te r   the   so lu t ions   d i scussed   in   Sec t ion  7.1  and 7.2 were ob- 

ta ined ,   the  more recent   expression  for  the inner  eddy v i scos i ty  law 

given by Cebeci [ r e f .  131 became ava i lab le ,  T h i s  re la t ion,   equat ion 

(74), was used i n   t h e  boundary-layer  computer  program with and without 

including  the  preasure  gradient  term; equation  (74) i s  t h e  same as 

that   g iven by Van Driest, equation (70). when the   p ressure   g rad ien t  

term is neglected. The resu l t s   ob ta ined  using equation (74) with  the 

pressure  gradient  term included were e s s e n t i a l l y   t h e  same as that   g iven 

by t h e  Van Driest expression and r e su l t ed  i n  i n s t a b i l i t y  a t  z / r  = 100 

for t he  AEDC nozzle. 

* 

I n  a l l  of t h e   r e s u l t s  which  have  been  presented  up t o   t h i s   p o i n t  

using Van Driest's and Cebeci ' s   expressions  for   the  inner  eddy vis- 

cos i ty ,   the   ve loc i ty   der iva t ive  was e v a l u a t e d   a t . t h e   s t a t i o n  x + Ax. 
It was noted  that  i n  the cases which r e s u l t e d   i n  converged solut ions,  

the  solut ions  obtained were relat ively  unaffected by the   i nne r  eddy 

v i scos i ty  law which was used,  and  that: a l a r g e  number of i t e r a t i o n s  

were necessary i f   v i s c o s i t y  laws based  on Van Driest's [ r e f .  221 modi- 

fication  of  Prandtl 's   mixing  length were used. The diff icul ty   appeared 

t o  be in the   evaluat ion of To determine t h e  inf luence  of   the 

impl ic i t   eva lua t ion  of the  veloci ty   der ivat ive,   the   approximation 
(%)x+*x 

was made. With th i s  replacement,  the Van Driest inner  law, equation 

(70), r e su l t ed   i n   so lu t ions  which were e s s e n t i a l l y   i d e n t i c a l   t o   t h e  
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solut ions  obtained  using  the Reichardt expression,  equation ( 7 7 ) ,  and 

the  computer time requirement was nea r ly   t he  same for   both eddy vis- 

c o s i t y  laws. When the  pressure  gradtent  was included  in   equat ion ( 7 4 ) ,  

t he   r e su l t s   ob ta ined  showed tha t   the   p ressure   g rad ien t  term had l i t t l e  

inf luence upon the  solut ion.   For   the cases considered,  the  use of 

equations  (70), ( 7 4 ) ,  and ( 7 7 )  r e su l t ed   i n   so lu t ions  which  agreed t o  

wi th in  2 3%. Therefore ,   the   resu l t s  comparing the  eddy v i scos i ty  laws 

presented  in   Sect ion 7.1 should  be  considered as the   in f luence  of t he  

i m p l i c i t  evaluation of - ra ther   than   the   d i f fe rences  i n  the  eddy vis-  

cosity  expressions.  

aF 
a n  

The results  presented  in '   Section 7.2 have  been  obtained  uaing  the 

Reichardt  expression  for  the  inner eddy viscoai ty ,  and as mentioned 

above, the   so lu t ions  are not   s ign i f icant ly   a f fec ted   by   the   choice  of 

the   inner  eddy viscosity  expression.  Equations (71)  and ( 7 2 )  were not 

cons idered   in   th i s   eva lua t ion .  

7 .2  Laminar  and Turbulent Boundary-Layer  Flows of Reacting Gas 

Mixtures i n  Chemical Equilibrium 

For the  perfect   gas   solut ions  presented in  Section 7.1, i t  was 

possible   to   obtain  experimental   data   for  most  of t h e  problems con- 

sidered. However, it has  not  been  possible  to  obtain  experimental   data 

in the  range  of  pressure  and/or  temperature  where  the  departure from 

the  perfect   gas   condi t ion is s igni f icant .   For   the  problems  considered 

in th i s   sec t ion ,   bo th   the   per fec t  and the  equi l ibr ium  gas   solut ions 

are given  for   the cases where s ign i f icant   d i f fe rences  were found t o  ' 

exist: 

To check  the  accuracy of t he  table-look-up  procedure, a number of 
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problems were solved a t  conditions  corresponding  to the range of pres- 

Sure and temperature   where  the  perfect   gas   re la t ions are correct .  For 

t h e  cases considered  the  solutions  with  the  table-look-up and the  per- 

f e c t  gas optione  agreed  to   within 5 3Z. 

7.2.1 Equilibrium Gas Solu t ions   for  

Laminar  and Turbulent Flows Over F l a t   P l a t e s  

ltro f l a t   p l a t e  cases were considered  corresponding  to  the  experi- 

mental  data  given by Hironimus [ re f .  321. The free-stream Mach number 

and temperature  for Case 1 were 7.391  and 533"R and f o r  Case 2, were 

7.58 and 339"R respect ively.  The wall temperature was 533'R f o r  Case 

1 and 355"R f o r  Case 2. The test conditions are g iven   in   Table  V. 

P l o t s  of Stanton number based  on  edge  conditions are shown for   bo th  

f u l l y  developed  turbulent  and  laminar  flow  for Case 1 and Case 2 i n  

Figures 24 and 25. The so lu t ions  shown were obtained  with  the  table- 

look-up  procedure. The per fec t   gas   so lu t ions   for   these  cases d i f fe red  

from the  equi l ibr ium  solut ion by less than 3% and are not  presented. 

Downstream of t h e   t r a n s i t i o n  from laminar   to   turbulent   f low  the 

agreement  of the  predicted and the  experimentally  determined  Stanton 

number da t a  is wi th in  lo%, and i n  the   region of laminar  flow  the  agree- 

ment between the  numerical and experimental  data is good. 

7,2.2 Equilibrium and Per fec t  Gas Solu t ions   for  

Laminar Flow Over a Hyperboloid 

A 10"  half-angle  hyperboloid a t  a n   a l t i t u d e  of 100,000 f t .  with 

a wall temperature  of 1400°K was considered  for  a free-stream Mach 

number and temperature of 20.178 and 226.98"K. This case corresponds 

67 



t o  Case A of t h e  AGARD test cases (Lewis [ re f  . 331) . The f l i g h t  con- 

d i t i ons  are given i n  Table V I .  The body geometry  and p res su re   d i s t r i -  

but ion are shown i n  Figures 26 and 27. 

The so lu t ions  of bo th   per fec t  a i r  and equilibrium air have been 

obtained  for   the  laminar  case only. The per fec t  gas so lu t ion  is com- 

pared  with  the  results  of Adam [ref .  341, and the  equilibrium  solu- 

t i o n  is compared wi th   Blo t tner ' s  and  Smith's r e s u l t s  as presented by 

Lewis  [ re f  . 331 . 
Figure 28 shows the  boundary-layer  displacement  thickness  pre- 

d i c t ions   fo r   t he   pe r f ec t  and equilibrium air cases. The present method 

of so lu t ion  is s e e n   t o   b e   i n   e x c e l l e n t  agreement  with Adams' so lu t ion  

fo r   t he   pe r f ec t   gas  case. The present  equilibrium air s o l u t i o n   l e   i n  

good agreement  with  the  results  given by Keltner and  Smith [ r e f .  351 

but   d i f fe rs   by  a f ac to r  of two from the  solut ion  given by Blot tner  

[ re f .  11. It is noted   tha t   Blo t tner   used   f in i te  rate chemical re- 

act ions and complete  multi-component diffusion  whereas  Keltner and 

Smith  used 8 f inf te - ra te   b inary  a i r  model. 

P lo t s  of   the   sk in- f r ic t ion   coef f ic ien t  and Stanton number d i s t r i -  

but ions are shown in Figures 29 and 30. For the   per fec t   gas  case the  

skin f r ic t ion   p red ic ted  by the  present  method of   so lu t ion  is i n  excel- 

l e n t  agreement with Adams' so lu t ion   fo r   S / r  > 0.4, bu t   t he   so lu t ions  

d i f f e r  by up t o  10%  near . the  s tagnat ion  point .  The Stanton number 

dis t r ibut ion  given by the  present  method is i n  good agreement  with 

Adams' r e s u l t s   f o r  a l l  S/rn. 

n -  

For the  equi l ibr ium air  solut ion,   the   present  method is i n  excel- 

l e n t  agreement  with  Blottner 's   solution  for  both  skin-friction and 
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Stanton number d i s t r ibu t ions .  

The maximum di f fe rences  between Blot tner 's ,  Keltner and  Smith's, 

and the  present  results are less than 5%. 

7.2.3 Equilibrium and Per fec t  Gas Solu t ions   for  Laminar  and 

Turbulent Flow Over a Spherically-Blunted Cone 

A 5' half-angle  spherically-blunted  cone a t  a n   a l t i t u d e  of 70,000 

f t ,  is considered i n  th i s   sec t ion .*  The free-stream Mach number and 

temperature were 19,564  and 226.98"K respect ively.  The wall tempera- 

t u r e  was assumed to   be   cons t an t  a t  1000°R. The problem da ta  are pre- 

sented in Table VII. The geometry and p res su re   d i s t r ibu t ion  are shown 

in   F igures  31 and 32, The p r e s s u r e   d i s t r i b u t i o n   f o r   t h i s  case was 

determined f o r   p e r f e c t  air ,  y - 1.4, using t he  computer  program devel- 

oped by Inouye,  Rakich,  and Lomax [ref .  361. 

This problem is included t o  i l l u s t r a t e   t h e   s o l u t i o n  of a weak 

adverse   p ressure   g rad ien t   resu l t ing  from an  overexpansion  and recom- 

pression  of  the gas. Solutions are given  for   both  laminar  and f u l l y  

developed  turbulent   f low  for   specif ic   heat   ra t ios ,  y, of  1.4  and  1.165 

and equilibrium air. 

The boundary-layer  displacement  thickness,  skin-friction,  Stanton 

number, and heat- t ransfer  rate d i s t r ibu t ions   fo r   t hese   so lu t ions  are 

presented  in   Figures  33-37. Since  experimental   data or other  numerical 

so lu t ions  are not: ava i l ab le  for comparison, it is n o t   p o s s i b l e   t o  

assess the  accuracy  of   the  resul ts .  However, because of t h e   s i m i l a r i t y  

*This case was provided  by Mr. Randy Graves  of the  NASA Langley 
Research  Center as representat ive  of  a body of unpublished  free-flight 
experimental data a v a i l a b l e   f o r   t h i s  body. 
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with  the  hyperboloid  discussed  in   Sect ion 7.2.2, these   resu l t s   appear  

t o  show the   cor rec t   t rends .  

7.2.4 Turbulent Flow of  Equilibrium Gases in Axisyrmnetric Nozzles 

"he d a t a   f o r   t h i s  case are g iven   in   Sec t ion  7.1.2.C of t h i s  

Chapter.  Edenfield  [ref.  171  considered  the  nozzle  discussed i n   t h i s  

sect ion  for   prel iminary  invest igat ions  leading  to   the  design of con- 

toured  nozzles  for  hypersonic  hotshot wind tunnels   with a test sec- 

t i o n  Mach number of  about 20. Edenfield  used a number of   theor ies   to  

pred ic t   the  downstream  boundary-layer  displacement  thickness,  but  the 

ava i l ab le  methods of p r e d i c t i o n   e i t h e r   f a i l e d   t o   g i v e  a complete  solu- 

t i on   fo r   t he   nozz le  or  t h e   r e s u l t s  were found t o  be unacceptable. 

Attempts t o   s o l v e   t h e  problem us ing   the   E l l io t t ,   Bar tz ,  and S i lve r  

[ re f .  151 i n t e g r a l  method f a i l e d  a t  z / r  = 1350.* T h i s   f a i l u r e  was 

a t t r i b u t e d   t o   t h e  assumed power Law to ta l   en tha lpy   p ro f i l e s  used i n   t h e  

i n t e g r a l  method. All other   a t tempts  t o  predict   the   displacement   thick-  

ness  used  the momentum equat ion  only  with  the Crocco enthalpy  dis t r ibu-  

t ion  or   correlat ion  formulas .  

* 

Before  discussion  of   the  present   resul ts ,  a br ie f   descr ip t ion  of 

the  physical   nozzle  contour and the  contour   used  in   the  calculat ions 

is given. The physical   nozzle   consis ts  of a subsonic  region composed 

of a 10' conical  section  followed by a 5' conical   sect ion.  The th roa t  

i s  cy l indr ica l   wi th  a length  of  one  throat  diameter and the  supersonic 

port ion is a 5' conic   sect ion.  For the  calculat ions,   the   nozzle  con- 

tour  was smoothed as shown in   F igu re   17 ,  

*In t h i s   s e c t i o n  r denotes  the non-dimensional throat   redius .  
* 
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It should  also  be  noted tha t  t h e   t o t a l   l e n g t h  of the nozzle was 

given as 92,087 inches  (Menfield  [ref.   171, Using a th roa t   r ad ius  of 

0,055 inches   r e su l t s  in a maximum value of z / r  of approximately 1684, 

However, experimental   pressure measurements are g iven   in   F igure  19 f o r  

values of z/r  up to  approximately 1850. The pressure  data  used up- 

stream of z / r  = 100 corresponds  to   an  isentropic   expansion of t h e  

gas (nitrogen) a The t r a n s i t i o n  from the  isentropic  expansion  pressure 

d a t a   t o  the experimental   data is p a r t i c u l a r l y   n o t i c e a b l e   i n   t h e   l a r g e r  

scale p lo t s   o f   t he  boundary-layer  thicknesses computed using  the  pre-  

s en t  method o f   so lu t ion   fo r   z / r  between  100  and 400. With reference 

t o   t h e  above comments, i t  is not  clear what  conclusions  should be 

made i n   t h e  comparison of the   p red ic ted  and experimental.disp1acement 

thickness,  However, t he  same conditions  have  been  used for a l l  pre- 

d i c t ion  methods  and t h e   r e s u l t s  of t he   d i f f e ren t   so lu t ions  may be  

compared, 

* 

* 
* 

* 

The momentum th i ckness   d i s t r ibu t ion   co r re spond ing   t o   t he   E l l i o t t ,  

Bartz, and S i l v e r   i n t e g r a l  method o f  so lu t ion  and the  present  method 

is shown i n   F i g u r e  38. The v e l o c i t y   o r  boundary-layer  and  displacement 

thickness are shown i n   F i g u r e  39, and the  predicted  heat- t ransfer  rates 

are g iven   in   F igure  40, The resu l t s   p resented   in   F igure  40 from t h e  

i n t e g r a l  method were obtained by so lv ing   bo th   the  momentum and  energy 

equations  with a power law f o r  the to ta l   en tha lpy   prof i les .  

The d i f fe rences  i n  t h e  boundary-layer  thickness  predictions  vary 

from 10% f o r   t h e   v e l o c i t y   t h i c k n e s s   t o  a fac tor   o f  2 f o r   t h e  momentum 

and displacement  thicknesses, The heat- t ransfer  rates predicted by t h e  

i n t e g r a l  method are from 30 t o  60% lower than  the rates predicted by 
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the   present  method. The results obtained  with  the  integral ,  method do 

not  appear to  be realistic, and as noted  previously  the method f a i l e d  

a t  z / r  = 1350. The assumed power law to ta l   en tha lpy   prof i les   to -  

ge ther   wi th   the  assumed v e l o c i t y   p r o f i l e s   i n   t h e   i n t e g r a l  method 

r e s u l t e d   i n   s o l u t i o n s  which predic ted   l a rge   dens i t ies   near   the   ou ter  

edge  of  the  boundary  layer i n   t h e  downstream region of the  nozzle.  

The dens i ty   p rof i les   p red ic ted  by the   i n t eg ra l  method, t he  method of 

Enkenhus  and Maher [ r e f .  371 using  the Crocco enthalpy  dis t r ibut ion,  

and the  present  method are shown i n   F i g u r e   4 1   f o r   z / r  = 984. As 

noted by Edenfield  [ref.  171, p i to t   p re s su re  measurements would de tec t  

the  presence of these  peaks in dens i ty  if they exist, but   the measure- 

ments made indicate   that   such  peaks do not   ex is t .  The d e n s i t y   p r o f i l e  

predicted  with  the  present  method shows a decrease   in   dens i ty   near   the  

wall which is c h a r a c t e r i s t i c  of boundary l aye r s   fo r   co ld  wall cases. 

* 

* 

Figure 42 shows the  boundary-layer  displacement  thickness  pre- 

d ic ted  by Enkenhus and Maher [ re f .  371,  Burke  and Bird  [ ref .  381, Lee 

[ref. 391, El l io t t ,   Bar tz ,  and Silver [ re f .  151,  and the  present  

method of solut ion.  The present two-dimensional  displacement  thick- 

ness   predict ion i e  i n   g e n e r a l  agreement  with  Burke's  calculation  based 

on t h e  edge  Reynolds number. The axisymmetric  value  of  the  displace- 

ment-thickness  prediction is i n   g e n e r a l  agreement  with  the  solution 

of Lee. Burke's  solution  based  on a reference Reynolds number ( the  

reference Reynolds number is computed using  Eckert 's  reference  condi- 

tions)  gave  the  best  agreement  with  the  date  presented  near  the  nozzle 

ex i t ,   bu t  as noted a t  the  beginning of this   eect ion,   the   experimental  

data  presented a t  z / t  = 1825 is outside  of  the  nozzle  dimensions. 
* 
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The methods of Enkenhus and Maher, and El l io t t ;   Bar tz ,  and Silver are 

i n  poor  agreement  with  the  experimental  data  presented and the   o ther  

solut ions.  

Figure 43 shows the  displacement  thickness  predictions of t h e  

E l l io t t ,   Ba r t z ,  and S i lve r  method fo r   bo th  an assumed power law and the  

Crocco enthslpy  dis t r ibut ion.   For   the Crocco en tha lpy   d i s t r ibu t ion  

only  the momentum equation is solved by t h e   i n t e g r a l  method. Two solu- 

t ions  are given  corresponding  to   different   skin-fr ic t ion laws using  the 

method of Enkenhus  and Maher. The present two-dimensional  and  axisym- 

metric so lu t ions  are i n  good agreement  with  the  other  solution  proce- 

dures which use  the momentum equation  only. It is not  clear why these  

predict ion methods should be i n  good agreement  with  experiment f o r  

z / r  up t o  1100  and overpredict   the  displacement  thickness by a f ac to r  

of two at the   nozz le   ex i t .  

* 

To demonst ra te   the   feas ib i l i ty  of obta in ing   so lu t ions   to  problems 

with more severe  conditions  than  the cases presented,  the  nozzle 

geometry, wall en tha lpy   d i s t r ibu t ion  and r e s e r v o i r   d e n s i t y   f o r   t h e  

above case have  been  retained and the   reservoi r   p ressure  and  tempera- 

t u r e  were changed t o  58 ,  522 ps i a  and 18,000"R respect ively.   Solut ions 

were obtained  for   perfect   n i t rogen,   equi l ibr ium  ni t rogen,  and equi l i -  

brium air  f o r   f u l l y  developed  turbulent  flow. The pressure   d i s t r ibu-  

t ion  corresponds  to  a one-dimensional  expansion of t h e  gas and is 

shown f o r   t h e   t h r e e  cases in   F igu re  44. The e x i t  Mach numbers for  per- 

fect   n i t rogen,   equi l ibr ium  ni t rogen,  and equilibrium air were 21.64, 

13.69,  and  10.62 respect ively.  

Y 

The predicted  heat- t ransfer  rate and  Stanton number d i s t r i b u t i o n  
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are  shown  in  Figures 45 and 4 6 .  The  heat-transfer  rates  predicted  for 

the  equilibrium  gases  were  from  two  to  five  times  greater  than  the 

perfect  gas  solution  for  the  region n b r  and  downstream of the  nozzle 

throat. As a  result  of  the  different  edge  conditions,  the  Stanton 

number  distribution  Shows  less  variation. 

7.3 Perfect  Gas  Solutions  for  Laminar  and  Turbulent 

Flow Over a Flat Plate  With  Normal Mass Injection 

Three  flat-plate  solutions  are  presented  for  air  into  air  mass 

transfer  and  one  case  with  no mass transfer  corresponding  to  the  exper- 

imental  data  referred  to as run no's. 8, 11,  15,  and  19  by  Danberg 

[ref. 401. The free-stream  Mach  number  for  these  cases  was  approxi- 

mately 6.3 and the temperature  was  approximately 59°K. The  injection 

paramater,  c4 = varied  from 0 to 25.8 x lom4. The ratio  of 

the  wall-to-edge  static  temperature  was  approximately 4.0. More com- 

plete  data  are  given in Table VIII. 

The  velocity  profiles  obtained  numerically  are  compared  with 

Danberg's  experimental  data for the  four  cases in Figure 47. The num- 

erical  solutions  correspond  to  fully  developed  turbulent  flow  where 

the  inner  eddy  viscosity  law  is  the  modified  Van  Driest  expression 

given by Cebeci. [ref.  131. For y c 6, the  predicted  velocity is 
rl. 

consistently  lower  than the experimental  data,  and  except  for the  case 

with  no mass injection,  run no.  19, the  velocity  derivative 8t the 

wall  given  by  the  numerical  solution  is  considerably  less  than the 

corresponding  experimental  value. The  computed  velocity  profiles  are 

not  in  good  agreement  with  the  experimental  data  for  any of the  cases 

considered  having mass transfer. 

The  predicted  skin-friction  and  heat-transfer  distributions  are 
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shown in   F igu res  48 and 49. The predic ted   hea t - t ransfer   d i s t r ibu t ion  

is i n  good agreement  with  the  experimental  data. However, as would be 

expected  from t h e  poor  agreement of the   p red ic ted  and experimental 

ve loc i ty   p ro f i l e s ,   t he  agreement  between the  predicted and experi- 

mental ek in- f r ic t ion   da ta  is unsat isfactory.  It is noted   tha t   the  

experimental   heat-transfer  data were determined h d i r e c t l y  by t he   u se  

of thermocouples imbedded i n  t h e   p l a t e ,  The experimental   skin-fr ic t ion 

da ta  were determified  by  two-point d i f f e r e n t i a t i o n  of the  experimental  

ve loc i ty   p ro f i l e  and are more l i ke ly   t o   be   i n f luenced  by the  presence 

of  the  probes  within  the  boundary  layer,   Tabulations of the   predicted 

and experimental   data   for   heat   t ransfer  and sk in- f r ic t ion  are given  ' in 

Table IX for   the   tu rbulen t   so lu t ion .  

7.4 Convergence Test and Computing Time Requirements 

The solutions  presented  above  have  been  obtained  with E ; ~  - ob01 

using  the  funct ion test and the  addi t ional   requirement   that   the  mini- 

mum number of i t e r a t i o n s  a t  t h e  new s t a t i o n   b e  2 o r   g rea t e r .  The last 

requirement was found t o   b e   n e c e s s a r y   t o  insure a smooth d i s t r i b u t i o n  

of the  displacement  thickness when considering  turbulent  f low problems 

with weak pressure  gradients ,  

To determine  the 

resu l t ing   so lu t ion ,  a 

€f 0,001, The f l a t  

inf luence of E upon the  computing time and t h e  

number of  the  above cases were computed with 

p l a t e  Case I considered i n   S e c t i o n  7,Z.l re- 

f 

quired  approximately cen times more  computing time with ef = 0.001 

than  with = 0.01. The r e su l t s   o f   t he  two so lu t ions   d i f fe red  by 

less than 2%. Essent ia l ly   the  same r e s u l t s  were obtained  for   other  

body shapes  where  the flow was turbulent  and t h e   r a t i o  of wall t o  
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stagnation  enthalpy  was  small.  The  computing  time  was  not  significantly 

influenced  by  for  laminar  flows  with  zero  pressure  gradient,  since 

these  flows  are  self  similar, 

Representative  computing  time  requirements  for  an IBM 360-65 

computer  are  given  in  the  table  below.  The  times  given  are  for  solu- 

tions  where a large  number of stations  were  solved  and  should  be  re- 

garded  as  maximum  computing  times  rather  than  the  optimum.  The  tabu- 

lated  times €or turbulent  flows  are  for  the  use of the Reichardt  inner 

eddy  viscosity  law,  The  solution  times  would  be  increased  by  approxi- 

mately 20 to 30% using  the  Van  Driest  inner  law  for  the  same  number of 

stations  as  when  using  the  Reichardt  law, 

Execution  Time  (M5n:Sec) 
Laminar Turbulent 

Body Section Perfect Equilibrium Perfect Equilibrium 
Shape Number Gas Gas Gas Gas 

7.2.1 0 : 33 0 1: 32 2 : 4  
(Case 1) 

Flat  Plate 
7.241 0 : 32 0 1: 9 2:36 
(Case 2) 

Hyper- 
boloid 7.2.2 0 t 51 15: 1 - 0 

Blunt  Cone  7.2.3 2 : 27 11: 22 4: 9 19: 3 
7.1.2  (B) - - 2:26 I 

Nozzle 
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VIIIe CONCLUSIONS AND REMARKS 

The r e s u l t s  which  have been presented  demonstrate  that   the Crank- 

Nicoleon  type implicit  f in i te -d i f fe rence  scheme can  be  used success- 

ful ly   to   obtain  solut ions  of   the   turbulent   boundary-layer   equat ions 

for  nozzle  f laws  of  perfect   gases or mixtures  of  perfect  gases in chem- 

ica l  equilibrium,  For  the low Mach number per fec t   gas   so lu t ions  con- 

sidered  for  nozzle  f lows,  the  present method of  solution was fn excel- 

lent  agreement  with  the  experimental  data.  For  the  hypervelocity 

nozzle ,   the   present   solut ions were Ln good agreement  with  other numeri- 

cal so lu t ions  which  used  only  the momentum equation  and  the Crocco 

enthalpy  dis t r ibut ion.  However, these so lu t ions  were not  in good 

agreement  with  the  available  experimental  data,  but  these  experimental 

data   did  not  match with  the  given  geometry  near  the  nozzle  exit. The 

equi l ibr ium  solut ion  for   the  hyperveloci ty   nozzle  was found t o  be 

e s s e n t i a l l y   t h e  same as t h a t   f o r  a perfect   gas  a t  t h e  same rese rvo i r  

conditions, Thus, the   da ta  which were ava i l ab le  do  not  appear'  to  be 

su f f i c i en t   t o   e s t ab l i sh   t he   accu racy  of the  numerical method. 

The resul ts   presented  for   equi l ibr ium  laminar   f low  over  a hyper- 

boloid were found t o  b e  in excellent  agreement  with  other  numerical 

so lu t ions   fo r   t he   p red ic t ions   o f   hea t   t r ans fe r  and skin f r i c t i o n ,   b u t  

the  displacement   thickness   calculat ions  differed by a f a c t o r  of two o r  

more among the  different :   numerical   solut ions which were a v a i l a b l e   f o r  

comparison. 

Solutions of f la t -p la te   l aminar  and turbulent  boundary-layer  flows 

of  an  equilibrium  gas were obtained,   but   these  solut ions were a l s o  

e s s e n t i a l l y   t h e  same as f o r  a pe r fec t  gas. The solut ions  obtained were 
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i n  good agreement  with  the  experimental  data. 

I n  a l l  of the  turbulent  boundary-layer  calculations  considered 

without mass t r ans fe r  a t  the  wall, the-   so lu t ions   ob ta ined  were found 

to  be  essentially  independent  of  the  expression  used  for  the  inner 

eddy v i scos i ty  law. That is the   pressure  gradient  term appearing i n  

the   inner  eddy v i scos i ty  law may be included  or  excluded  without sig-  

ni f icant ly   in f luenc ing   the   resu l t s ,  

Fo r   f l a t -p l a t e   t u rbu len t   f l a t s   w i th  mass in j ec t ion  a t  the  wall, 

the   numer ica l   resu l t s  were in good agreement  with  the  indirectly 

determined  experimental   data   for   heat   t ransfer ,   but   the   predict ions 

of s k i n   f r i c t i o n  and veloci ty   prof i les ,   determined from d i r e c t  measure- 

ments, were not  in sat isfactory  agrement   with  the  experimental   data .  

Thus, these   resu l ta  are also inconclusive,  

The present method of  solution  has  been  demonstrated  to be accu- 

r a t e - f o r   b o t h   i n t e r n a l  and ex terna l  flows of per fec t   gases   for   bo th  

laminar  and  turbulent flow f o r   t h e  case of no mass in jec t ion .  More 

experimental  data are needed t o   v e r i f y   t h e  method f o r   t h e  case of mass 

t r ans fe r  . 
For the  equi l ibr ium  chemistry  calculat ions,   the   present  method of 

so lu t ion   fo r   t he  laminar flow  of  the  gas is  i n  good agreement  with 

other  numerical   solutions.   For  turbulent  f low  of  an  equilibrium gas 

the   p resent  method of  solution was found t o  be stable and the   so lu t ions  

show the  expected  trends,  but  the  experimental  data which were avail- 

able were in 8 range of pressure  and/or temper8t;ure  which showed l i t t l e  

departure from the  perfect   gas   condi t ion.  With the  exception of the  

El l io t t ,   Bar tz ,  and S i lve r   [ r e f .  151 i n t e g r a l  method of so lu t ion   fo r  

equilibrium  chemistry  turbulent  boundary-layer  flows in   nozz les ,   o ther  
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numerical  solutions were not  available'for comparison. For the case 

of a  hypervelocity  nozzle,  the  integral  method  failed  to  converge  for 

a  rtagnation  pressure and temperature of 11,511  psia  and 30OO0K. 

Whereas, the present  method was found  to be stable  for  nozzle  calcula- 

tiono with reservoir  pressures and temperatures up to 58,522 psia  and 

10,OOO°K tespactivaly. 
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IX. APPENDIX A 

Thermodynamic and Transport   Properties and  one  Dimensional 

Expansion of a Reacting Gas Mixture   in  Chemical Equilibrium 

In order   to   so lve   the   conserva t ion   equat ions   for  laminar or  tur- 

bulent  boundary-layer  flow of an   a rb i t ra ry   mix ture  of per fec t   gases   in  

thermodynamic equilibrium, i t  ie necessary  to   specify  the boundary= 

layer  edge  conditions and to   p rovide  a method for   determining  the 

l o c a l  thermodynamic  and t r anspor t   p rope r t i e s   fo r   t he  gas mixture con- 

sidered. 

The thermodynamic  and t ranspor t   p roper t ies  and the   inv isc id  ex= 

pansion  data which  have  been  used in   t he   p re sen t   so lu t ion  of t he  

boundary-layer  equations  have  been  obtained by modifying  the  basic 

computer  program  developed by Lordi, Mates, and  Moselle [ r e f .  201,. 

which was developed to   determine  the  inviscid  expansion  of   arbi t rary 

gas  mixtures  assuming  either  frozen  chemistry,  equilibrium  chemistry, 

o r   f in i te - ra te   chemis t ry .  Only the  equilibrium  chemistry  option is 

considered in t he   s ec t ions  below. 

A . l  Equilibrium Gas Propert ies  

A br i e f   desc r ip t ion  of the  procedure  for  determining  the  equili-  

brium  chemistry  solution is included i n   t h i s  appendix. The nota t ion  

is the  same as t h a t  employed by Lordi, Mates and  Moselle, and is in= 

cluded i n  a separa te  list of symbols  presented a t  the  end  of t h i s  appen- 

dix. The analysis  presented below is es sen t i a l ly   t he  same as t h a t  

given in   Sec t ions  2.1, 2.2, and 4.1 of   the i r   repor t .  
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A . l . l  Thermodynamic and Transport   Properties 

The enthalpy of a given  gas   mixture   in  thermodynamic equilibrium 

is  a funct ion  of   the  internal   energies   of   the   species  and the  chemical 

composition  of  the mLxture,  which are r e l a t e d   t o   t h e   l o c a l  thermo- 

dynamic propert ies ,   pressure,   densi ty ,  and temperature, The  composi- 

t i o n  of a specified  gas  mixture a t  a given  equilibrium s ta te  i s  

determined f o r  c chemical  elements and s chemical  species as follows. 

The chemical   equat ion  for   the  i th   species  may be  expressed as 

i - 1, 2,....,8 

The spec ies   to   be   inc luded   in   the   mix ture  are specified  through  the 

matrix CY 
ij 

The equilibrium  formation  reactions for t h e   s p e c i e s   i n  terms of 

the  elements may ‘be expressed by . (8  - c) linearly  independent rela- 

t ions  of   the  form 

where the  rank of the  a matrix is C. Lordi, Mates and  Moselle  note 

t h a t   i n  some cases i t  is necessary  to  choose  species  other  than  the 

chemical elements as components. The formation  react ions  for   the 

ij 

(s - c) dependent  species are expressed  in  terms of  the c components as 

M 
j, 

i = c + 1, c + 2,....,S (A3 1 

The number of gram-atoms of each  chemical  element, Q,, contained 

in   the   mix ture  must be given in   addi t ion   to   the   chemica l   spec ies  and 
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chemical  elements, The to ta l  number of gram-moles of t h e  components 

which are present   in   the   mix ture  is given  by 

C 

(A4 

This re lat ion  specif ies   the  e lement   composi t ion  in  terms of  the corn- 

ponents  rather  than  the  chemical  elementsr 

Enforcing mass conservation  in  each of the  formation  reactions and 

a global  mass conservat ion  gives   the mole f r ac t ions  of t he  components 

as 

where 

1 The dependent  species,concentrations are related t o   t h e  component con- 

centrations  through  the  equilibrium  constants  for  the  formation re- 

actions,   equation (A31 , bp 

where 
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The concentrations of the  independent  species  or components are 

determined  by  solving  equation (A5) and using a Newton-Raphson itera- 

tion procedure to   so lve   equa t ion  (A4)  . The molecular  weight a t  t h e  

epecif ied  pressure and temperature is calculated from 

The dens i ty  is then  determined from the  equation of state f o r  a mix- 

t u r e  of perfect   gases  

RO P' - p '  M T' (A9 1 

and the  specif ic   enthalpy is given by 

For a mixture of perfect  gases,   the  molar  enthalpy, h chemical  poten- 

t i a l ,  pj, a t  one  atmosphere  of  pressure, and  molar  entropy, s are 

functions  of  temperature  only.  These  data are spec i f ied  by e i t h e r  a 

eimple-harmonic-oscillator model, or by  polynomial  curve f i t s  t o  more 

accura te   ca lcu la t ions  of t he   spec ie s   p rope r t i e s ,  The latter method is 

ca l l ed   t he   t hemo- f i t  method. In both methods, the   spec ies  are assumed 

to  be   v ib ra t iona l ly  and e lec t ronica l ly   exc i ted ,   in   equi l ibr ium  wi th   the  

local   t ranslat ional   temperature .  The t r ans l a t iona l  and ro t a t iona l  

degrees  of  freedom are assumed t o   b e   f u l l y   e x c i t e d ,  

j ,  
0 0 

j' 

For the  harmonic-oscillator model, the   spec i f ic   en tha lpy   for  a 

monatomic or   diatomic  species  is expressed as 
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and the  chemical potential at standard pressure is given by 

5 + 2(n - 1)  
T 2 In T 

where 

5 + 2(n - 1) 
2 aj = bj + In TA 

and 
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For the  thermo-fit  method, these   da ta  are given by 

and  by d i f f e r e n t i a t i o n  of equation ( U S )  

T "aj j j j 4- b T' + c (T')2 + d (T' )3  + ej ( T f ) 4  (Al.6) 

For  both methods so is determined  from 
j 

and t h e   s p e c i f i c   h e a t  of the   ind iv idua l   spec ies  is determined  by  dif- 

ferent ia t ion  of   equat ion (A12) or  equation (Al6). 

The l o c a l  thermodynamic  and t ranspor t   p roper t ies  which  must  be 

spec i f ied  for u s e   i n   t h e  boundary-layer  computer  program are:* T', 

Tables  of  these  data are generated  for   the  desfred range of 

temperatures in decreasing T' at  constant   pressure,  The procedure is  

repea ted   for   decreas ing   in  P to   span   the   des i red   range   in   p ressurer  

Conversion of t he   da t a   t o   t he   r equ i r ed  form i s  as follows 

QJ 

QJ 
HT' M 

loglo[ Mo ] - log 10 (H'/RGAS) 
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% pA(2.205 x 
P - log 

lo (3.531 x low5)  (32.176) ( p i )  

The der iva t ive  is  computed using a f ive  point   Lagrangian  different ia-  

t i o n  polynomial. 

The Prandt l  number i s  obta ined   by   in te rpola t ion   in   the   t ab les  of 

data  given by Hansen [ r e f .  411 f o r  air and  Ahtye  and Peng [ re f .  421 f o r  

nitrogen. 

The v i scos i ty  of the  gas mixture is computed using Wilke's  [ref. 

431 semi-empirical  formula 

where 

Species   viscosi t ies ,  l~ , are approximated by c u w e   f i t   d a t a  of  the 
* 
i 

f o m  
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The constants  Ai, Bi, and C are obtained from c u r v e   f i t t i n g   t h e  p 

data  given by use  of  the method of Pun  and Mason [ re f .  441. The da ta  

* 
i i 

which  have  been  used i n  the  boundary-layer  calculations were given by 

Blo t tner   [ re f ,  71, 

The frozen values of themal   conduc t iv i ty  and Prandt l   umber ,  and 

the  compressibi l i ty   factor  are a l s o  computed, bu t   these   quant i t ies  were 

not  used. 

A descr ipt ion  of   the  modif icat ions made t o  t he  computer  program 

of Lordi, Mates aud Moselle (for computing the thermodynamic propert ies)  

and the  mixture   t ransport   property  calculat ions are given by Miner, 

Anderson  and Lewis [ref. 281 wi th   l i s t i ngs   o f   t he  added or  modified 

subroutines,  and a description  of  the  necessary  input  data is given. 

A.1.2 Boundary-Layer Edge Conditions  for a 

Gas Mixture i n  Thermodynamic Equilibrium 

The boundary-layer  edge  conditions  for  the  equ5librium  gas case 

are obtained from the  isentropic  expansion of the  gas  from a given 

s tagnat ion   or   ' r eservoi r  state. To obtain  the  inviscid  expansion  of 

the  gas  it is necessary  to  conserve momentum and  energy i n   a d d i t i o n  t o  

the  requirements   given  in   Sect ion A.1.1. The procedure  for  determining 

the   inv isc id   expans ion   d i scussed   be la r ' i s   essent ia l ly   tha t   g iven   in  

Section 2.2 of  Lordi, Mates and Moselle  [ref. 201. 

For a quasi-one-dimensional inviscid  f low  of a gas  the  conserva- 

t i on  of mass, momentum, and  energy is expressed as 

87 



puA = M - constant 
udu + ; dp * 0 1 

u 2 H -t 2 H = constant 
0 (A231 

For  a  chemically  reacting  gas  mixture  the  entropy  is  expressed  as 

for an isentropic  path. The governing  equation which must be satisfied 

by the  c  components  and  the  pressure  is 

where  from (AS) 

and  from (A24) 

The expansion is obtained by  taking  successive  temperature  steps 
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from the   reservoi r   va lue  and solving  equations (A251 and (A26) by a 

Newton-Raphson method to  determine  the  composition and pressure a t  the  

spec i f ied  temperature and entropy. 

To expres s   t he   so lu t ion   i n  terms of area r a t i o ,   t h e  c r i t i ca l  mass 

flow is f i r s t  determined  by  computing t h e  maximum value  of pur This 

maximum value  with  the  corresponding  temperature  determines the t h roa t  

conditions for nozzle flows. The so lu t ion  is then  res tar ted from the 

reservoi r  and t h e  area r a t i o  is determined  from  equation (A21) . A t  

each  point   in   the  expansion,   the   densi ty  and Mach number are computed 

from 

P' - p '  = T' RO 

M 

and 

where the   subscr ip t  b r e f e r s  to the   values  a t  the  previous step. 

The area r a t i o  is computed using 

The veloci ty ,   pressure,  and enthalpy are converted to t h e  form 

required by t h e  boundary l a y e r  program as follows 

u = u(R0(778.158)(1.8)  (32.176) TA/M)1/2 
* 

89 



Lordi, Mate6  and Moselle's computer  program [ref. 201 was modified and 

is described by Miner, Anderson, and L e w i s  [ref. 283 where the  addi- 

tional input data  are  given. 
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a1 

A 

b 3 

C 

c9 

C 
* 
P 

d 3 

h 

H 

k 

LIST OF SYMBOLS 

constant in thermo-fit  and harmonic  oscillator  expressions 

for  chemical potential, 

ratio of local  cross-sectional  area to minimum cross- 

sectional area, 

coefficient  of T' in thermo-fit  expression for species 

enthalpy, or defined by Eq.(AlC) for  harmonic-oscillator 

description, 

number  of  elements in mixture. 

coefficient of (T') in  thermo-fit expression  for  species 

enthalpy, or mass fraction. 

specific  heat  of  mixture (ft  /sec2-'K). 

dimensionless  specific  heat (cp/RGAS) . 
coefficient of (T') in thermo-fit expression  for  species 3 

enthalpy . 
coefficient of (T') in thermo-fit  expression for enthalpy. 

2 

2 

* 

4 

degeneracy of the 

Plank's  constant, 

molar  enthalpy  of 

specific  enthaLpy 

lth  electronic  state  of  the jth species. 

the jth species 

of mixture - I. 
Boltzmenn's  constant 
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k 
j 

Qk 

RO 

RGAS 

6 

T 
* 

U 

U 

xi 

- 
constant  in  thermo-fit   expression for the  chemical 

p o t e n t i a l  of the j t h   s p e c i e s .  

ewi l ibr ium  cons tan t   for   the   i th   reac t ion   based   on   par t ia l  

preesure 

mas8 of t he  j th p a r t i c l e  (gm) . 
molecular  weight (gms/mole) . 
Mach number 

molecular  weight of the  gas   mixture  at standard atmos- 

pheric  conditions.  

number of atoms i n   t h e  j th species.  

pressure (P = P'/PA),  P' i n  atmospheres. 

mole e rac t ion  of j t h  component when only  independent 

spec ies  are present in mixture. 

number of gram atoms of kth  element  in  mixture. 

universal  gas constant 

gas   cons tan t   ( f t  /sec -OK) 

number of spec ies  i n  mixture 

molar  entropy of j t h   s p e c i e s  (s  = s'/Ro) 

temperature (T'/TA);  T' i n  OK 

ve loc i ty   ( f t / s ec )  

2 2  

j j  

ve loc i ty  u = u ' /  Ro TA/M, I J I  
mole-fraction  of j t h  species 
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a i 
j 

9 

9 
3 

matrix  specifying  the  elements and species  in  the  chemical 

model of the  mixture 

mass concentration of the   i th   species ,   lb-mole/ lb  

energy of the   g th   e lec t ronic  state of t h e   j t h   s p e c i e s  

charac te r i s t ic   re la t iona l   t empera ture  of t he   j t h   spec5es  

charac te r i s t ic   v ibra t iona l   t empera ture  of t h e   j t h   s p e c i e s  

chemical  potential  of t h e   j t h   s p e c i e s  1.1 j =eJ 
* 

pi spec ies   v i scos i ty  (gm/cm-sec) 

I 

vij 
s to ich iometr ic   coef f ic ien ts  of the  equilibrium  formation 

reac t ions  

P densi ty  (P P'/P;) 

P 
* 

densi ty  ( s lugdft  1 3 

% 
P 

Subscripts 

0 reservoir   condi t ion 

8 standard  atmospheric  condition 

i pertaining t o  t h e   i t h   r e a c t i o n  

j pertaining to t he  j th   spec ie s  

k pertaining  to   the  kth  e lement  
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1 pertaining to  the lth electronic level 

Superscripts 

dimensional quantity 

refers  to standard  presaure condition 
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TABLE I 

Test Conditions for Cole's Flat Plate Experiments 

20  103 561 2219 3.701 0,1642 Adiabatic 

26 131 568 1972 2.578 0 387 Adiabatic 

62 302 . 563 2327 4.544 0.322 Adiabatic 
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TABLE I1 

Elliott.  Bartz. and Silver  Test  Case  Nozzle Data 

Po = 300 p i a  P, - 11.54 psia 

To 0 4500 OR T, 9 2614 OR 

Re, 0.2 x 10 /in. 6 = 3.7 x slugs/ft 3 

M, = 2.685 Tw = 1125 O R  

u, - 6231 ft/secr Pr = 0.83 

y 1.2 



/ 

TABLE I11 

Test Conditions for NASA-Lewis Nozzle - Case 2a 

Po 9 299.3 psia P, - 0.56 psia 

To 970 O R  T, - 161 O R  

Re, = 0.588 x 10 /in, 6 
p, - 2.9 x loo4 slugs/ft 3 

M, 5.01 u, 3118 ft/sec 

y 9 1.4 Tw variable 

I 



TABLE I V  

Test Conditions for AEDC Hotshot-Nozzle 

Po = 11511.57 paia 

To = 5400 OR 

Re, 5.3 x 10 /in. 4 

M, 18.37 

y 1.4 

= 11511.57 ps ia  

To = 5400 OR 

Re, = 3 .O x 10 /in, 4 

M, 17.24 

Tw, variable 

Perfect Gas (N2) 

P, = 4.34 x psia  

T, = 78.87 OR 

4.46 X 8lUgE/ft 3 
PC0 

u, = 8132 ftjsec 

Tw , variable 

Equilibrium N2 

P, = 4.33 x 10’~ psia 

T, = 108 O R  

P, 3.41 X low6 BlUgE/ft 3 

u, = 8732 ft/sec 
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TABLE V 

Test  Conditions for Hironimus'  Flat  Plate  Experiments 

Po 8498 psia 

To - 4913 O R  

Re, 4.46 x 10 /in 5 

M, = 7.391 

Tn - 533 O R  

Po = 14670 psia 

To = 3691 O R  

Re, = 1.33 x 10 /in 6 

M, 9 7.58 

Tn = 355 O R  

Case 1 

P, = 1.53 p s i a  

T, - 546 O R  

- 2.49 x slugs/ft 3 p, 

uW = 8157 ft/sec 

Case 2 

P, - 2.46 p s i a  

T, = 339 O R  

p, = 6.1 x lom4 slugs/ft 3 

u, - 6843 ftisec 
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TABLE VI 

Flight  Conditions for AGARD Test  Case A 

PA = 6.035 atms P, - 1.0997 x atms 

TA - 6996 "K T, - 226.98 OR 

Re, = 2157943/ft ALT - 100,000 f t  

M, 20.178 r = 1 i n  n 

u, 20,000 f t / s e c  Tw - 1400 O K  

1 04 



TABLE VI1 

Flight  Conditions for Sphere-Cone Sample Case 

PA/P, = 513.994 P, 4,429 x loo2 atms 

TA/T, - 33.065 

P;/P, 11.783 

T, = 217.9 O K  

P, = 5.555 x lo1* AMAGAT 

M, 19.564 A l t  - 70,000 f t  

Re, = 8.898 x 106/ft  Tw - 1000 "R 

u, - 19,000 f t / s ec  Y: - 1.1655 



TABLE VI11 

Test Conditions for Flat Pla te   F lows  wtth Mass Injection 

Run x, ran Rexx lom6 pw “w 
Tw’Te Me TeOK p 11 : 

- x 10 4 

NO e e  

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

2,925 

3,446 

4 160 

4.261 

3.249 

3,950 

4 264 

3,185 

3 619 

. -  

3.945 

4 a 298 

3,057 

3.163 

3 679 

4.260 

6.38 

6.49 

6 a 6 0  

6.48 

6.39 

6 e.42 

6.37 

6.28 

6.20 

6.22 

6.22 

6.52 

6.32 

6.44 

6.45 

4  .x02 

4 132 

4 263 

4 167 

4 .lo2 

3.991 

3 808 

3 864 

3 640 

3.759 

3.662 

4.418 

4 .171 

4.346 

4 297 

60 04 

58e1 

5603 

5803 

59  e5 

59 0 1  

60 ,O 

61.9 

62.4 

62.5 

62.5 

57.6 

61.0 

59 00 

58.6 

106 

9.23 

9 b o 7  

8.85 

9.21 

16.86 

16 24 

17.81 

24.91 

24.52 

24.90 

25.80 

0.0 

0.0 

0.0 

0.0 



TABLE Ut 

Comparison of Numerical  Predictions and Experimental  Data for Flat  Plate  Flaws  with Mass Injection 

exp b 

19 

calc 

exp b 3 
I-. 

8 

calc . 
exp . 

11 

calc 

exp b 

15 

calc 

530 2 

530.2 

530.2 

8034 7 

8036.6 

8042 2 

12.54 

0.0 

11.95 

8.39 

9 e21 

4 902 

5.17 

17 a81 

2.59 

3.40 

$30.2  8106.4  25.8 

0.376 

0,409. 

0.658 

0.665 

0.934 

0.996 

1.25 

10 b o  

10 b 1  

14.1 

15.4 

18 .O 

21.8 

22.7 

3023 15.11 

3284 14.06 

5288 11.94 

5341 14.40 

7511 11.46 

8009 14.23 

10166 11 36 

1.50  1.54  1.34  19.2  28.5 10820 14.39 



Figure 1: Boundary  Layer Coordinate System 
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Figure 7s Nozzle Geometry-Elliott, Bartz, and Silver Test Case 
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Figure 9r Heat Transfer  Distribution Along Nozzle  Wall-Elliott,  Bartz,  and Silver Test Case 
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